Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vega/vegafusion
Serverside scaling for Vega and Altair visualizations
https://github.com/vega/vegafusion
altair charting-library jupyter vega vega-lite
Last synced: 2 days ago
JSON representation
Serverside scaling for Vega and Altair visualizations
- Host: GitHub
- URL: https://github.com/vega/vegafusion
- Owner: vega
- License: bsd-3-clause
- Created: 2021-10-01T09:19:27.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-11-25T23:37:09.000Z (about 2 months ago)
- Last Synced: 2025-01-10T11:15:59.665Z (9 days ago)
- Topics: altair, charting-library, jupyter, vega, vega-lite
- Language: Rust
- Homepage: https://vegafusion.io
- Size: 20.9 MB
- Stars: 340
- Watchers: 23
- Forks: 18
- Open Issues: 52
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Codeowners: CODEOWNERS
- Governance: GOVERNANCE.md
Awesome Lists containing this project
- awesome-starred - hex-inc/vegafusion - Serverside scaling for Vega and Altair visualizations (others)
- StarryDivineSky - vega/vegafusion - Altair Python 接口与 Vega-Lite 的交互。其核心算法使用 Rust 实现,并通过 PyO3 提供 Python 集成,通过 wasm-bindgen 提供 JavaScript 集成。VegaFusion 可以解决 Altair 的`MaxRowsError` 问题,通过在服务器端执行数据密集型聚合和修剪不必要的列来提高性能,从而允许用户处理更大的数据集。用户可以通过在 Altair 中启用 `"vegafusion"` 数据转换器来使用 VegaFusion。 (其他_机器学习与深度学习)
README
---
# Overview
VegaFusion provides Rust, Python, and JavaScript libraries for analyzing and scaling [Vega](https://vega.github.io/vega/) visualizations. The goal is to provide low-level building blocks that higher level Vega systems (such as [Vega-Altair](https://altair-viz.github.io/) in Python) can integrate with.> [!NOTE]
> If you've arrived here looking for information on how to scale Vega-Altair visualizations to support larger datasets,
> see the Vega-Altair documentation on the [`"vegafusion"` data transformer](https://altair-viz.github.io/user_guide/large_datasets.html#vegafusion-data-transformer).## Python Installation
The VegaFusion Python package can be installed into a Python environment using pip
```bash
pip install vegafusion
```or conda
```bash
conda install -c conda-forge vegafusion
```## Documentation
See [Documentation](https://vegafusion.io/) and [Examples](https://github.com/vega/vegafusion/tree/v2/examples/python-examples/chart_state.py).