Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vertica/Machine-Learning-Examples
Vertica Machine Learning examples and example data.
https://github.com/vertica/Machine-Learning-Examples
Last synced: 3 months ago
JSON representation
Vertica Machine Learning examples and example data.
- Host: GitHub
- URL: https://github.com/vertica/Machine-Learning-Examples
- Owner: vertica
- Created: 2016-08-29T15:38:27.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2023-11-15T22:17:53.000Z (about 1 year ago)
- Last Synced: 2024-11-12T09:13:04.883Z (3 months ago)
- Language: Python
- Size: 13 MB
- Stars: 24
- Watchers: 16
- Forks: 22
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-vertica - vertica-machine-learning-examples - In-database machine learning examples. (Examples)
README
# Vertica Machine Learning Example Data
Use the data in this repository to complete the Machine Learning examples
in the [Vertica documentation].## Loading the data
To load the Machine Learning example data, run the following command
in 'data' directory of the cloned repository:```
$ vsql -f load_ml_data.sql
```Alternatively, you can run the indiviudal commands in the SQL file to load a particular data set.
## Machine Learning Examples
For complete examples of each of the Machine Learning function, see the following links:
* [Data preparation]
* [k-means]
* [Linear Regression]
* [Logistic Regression]
* [Naive Bayes]
* [Random Forest]
* [SVM Classification]
* [SVM Regression]## Reference Documentation
[Vertica machine learning reference documentation][Vertica documentation]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/DownloadingMLExampleData.htm
[Data preparation]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/DataPreparation/DataPreparation.htm
[k-means]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/Kmeans/Kmeans.htm
[Linear Regression]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/LinearRegression/LinearRegression.htm
[Logistic Regression]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/LogisticRegression/LogisticRegression.htm
[Naive Bayes]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/NaiveBayes/NaiveBayes.htm
[Random Forest]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/RandomForest/RandomForest.htm
[SVM Classification]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/SVM/SVM.htm
[SVM Regression]: https://my.vertica.com/docs/latest/HTML/index.htm#Authoring/AnalyzingData/MachineLearning/SVM/SVM__SupportVectorMachine_forRegression.htm
[Vertica machine learning reference documentation]: https://my.vertica.com/docs/latest/HTML/#Authoring/SQLReferenceManual/Functions/MachineLearning/MLAlgorithms.htm