https://github.com/verygoodplugins/mcp-automem
AutoMem is a graph-vector memory service that gives AI assistants durable, relational memory:
https://github.com/verygoodplugins/mcp-automem
ai falkordb graph-database memory nodejs qdrant rag redis vector-database
Last synced: 5 days ago
JSON representation
AutoMem is a graph-vector memory service that gives AI assistants durable, relational memory:
- Host: GitHub
- URL: https://github.com/verygoodplugins/mcp-automem
- Owner: verygoodplugins
- License: mit
- Created: 2025-09-22T14:39:30.000Z (4 months ago)
- Default Branch: main
- Last Pushed: 2026-01-04T17:58:33.000Z (22 days ago)
- Last Synced: 2026-01-05T00:14:49.784Z (22 days ago)
- Topics: ai, falkordb, graph-database, memory, nodejs, qdrant, rag, redis, vector-database
- Language: TypeScript
- Homepage: https://automem.ai/
- Size: 8.98 MB
- Stars: 17
- Watchers: 1
- Forks: 5
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
README
# AutoMem MCP: Give Your AI Perfect Memory ๐ง
[](https://www.npmjs.com/package/@verygoodplugins/mcp-automem)
[](LICENSE)
**One command. Infinite memory. Perfect recall across all your AI tools.**
```bash
npx @verygoodplugins/mcp-automem setup
```
Your AI assistant now remembers everything. Forever. Across every conversation.
Works with **Claude Desktop**, **Cursor IDE**, **Claude Code**, **ChatGPT**, **ElevenLabs**, **OpenAI Codex** - any MCP-compatible AI platform.
## The Problem We Solve
Every AI conversation starts from zero. Claude forgets your coding style. Cursor can't learn your patterns. Your assistant doesn't remember yesterday's decisions.
**Until now.**
AutoMem MCP connects your AI to persistent memory powered by **[AutoMem](https://github.com/verygoodplugins/automem)** - a graph-vector memory service.
## What You Get
### ๐ง Persistent Memory Across Sessions
- AI remembers decisions, patterns, and context **forever**
- Works across **all MCP platforms** - Claude Desktop, Cursor, Claude Code
- **Cross-device sync** - same memory on Mac, Windows, Linux
### ๐ Graph-Vector Architecture
- **11 relationship types** between memories (not just similarity)
- **Research-validated** approach (HippoRAG 2: 7% better associative memory)
- **Sub-second retrieval** even with millions of memories
### ๐ Works Everywhere You Code
| Platform | Support | Setup Time |
| ------------------ | ------- | ---------- |
| **Claude Desktop** | โ
Full | 30 seconds |
| **Cursor IDE** | โ
Full | 30 seconds |
| **Claude Code** | โ
Full | 30 seconds |
| **OpenAI Codex** | โ
Full | 30 seconds |
| **Any MCP client** | โ
Full | 30 seconds |
## See It In Action
### Claude Desktop with Custom Instructions

_Claude automatically recalls memories at conversation start using custom instructions_
### Cursor IDE with Memory Rules

_Cursor uses automem.mdc rule to automatically recall and store memories_
### Claude Code with Session Memory

_Git commits, builds, and deployments automatically stored to memory_
### OpenAI Codex with Memory Rules
OpenAI Codex uses config.toml to automatically recall and store memories
### Your AI Learns Your Code Style
```javascript
// After 1 week, your AI writes EXACTLY like you
// โ
It knows you prefer early returns
// โ
It uses your specific variable naming
// โ
It matches your comment style
// โ
It follows YOUR patterns, not generic best practices
```
### Decisions That Feel Like Yours
```
User: "Should we use Redis for this?"
Without AutoMem:
"Consider RabbitMQ, Kafka, or AWS SQS based on your needs..."
With AutoMem:
"Based on your pattern of preferring boring technology that works,
and your positive experience with Redis in Project X (March 2024),
yes. You specifically value operational simplicity over feature
richness - Redis fits perfectly."
```
## Quick Start
### 1. Set Up AutoMem Service
You need a running AutoMem service (the memory backend). Choose one:
**Option A: Local Development** (fastest, free)
```bash
git clone https://github.com/verygoodplugins/automem.git
cd automem
make dev
```
Service runs at `http://localhost:8001` - perfect for single-machine use.
**Option B: Railway Cloud** (recommended for production)
[](https://railway.com/deploy/automem-ai-memory-service?referralCode=VuFE6g&utm_medium=integration&utm_source=template&utm_campaign=generic)
One-click deploy with $5 free credits. Typical cost: ~$0.50-1/month after trial.
๐ **[AutoMem Service Installation Guide](https://github.com/verygoodplugins/automem/blob/main/INSTALLATION.md)** - Complete setup instructions for local, Railway, Docker, and production deployments.
---
### 2. Install MCP Client
Connect your AI tools to the AutoMem service you just started.
```bash
# Guided setup - creates .env and prints config for your AI platform
npx @verygoodplugins/mcp-automem setup
```
**When prompted:**
- **AutoMem Endpoint:** `http://localhost:8001` (or your Railway URL if deployed)
- **API Key:** Leave blank for local development (or paste your token for Railway)
The wizard will:
- โ
Save your endpoint and API key to `.env`
- โ
Generate config snippets for Claude Desktop/Cursor/Code
- โ
Validate connection to your AutoMem service
### 3. Platform-Specific Setup
**For Claude Desktop:**
```bash
# Setup prints config snippet - just paste into claude_desktop_config.json
npx @verygoodplugins/mcp-automem setup
```
**For Cursor IDE:**
[](cursor://anysphere.cursor-deeplink/mcp/install?name=memory&config=eyJlbnYiOnsiQVVUT01FTV9FTkRQT0lOVCI6Imh0dHA6Ly8xMjcuMC4wLjE6ODAwMSIsIkFVVE9NRU1fQVBJX0tFWSI6InlvdXItYXBpLWtleS1pZi1yZXF1aXJlZCJ9LCJjb21tYW5kIjoibnB4IC15IEB2ZXJ5Z29vZHBsdWdpbnMvbWNwLWF1dG9tZW0ifQ%3D%3D)
```bash
# Or use CLI to install automem.mdc rule file
npx @verygoodplugins/mcp-automem cursor
```
> **Note:** After one-click install, configure your `AUTOMEM_ENDPOINT` in `~/.cursor/mcp.json` or Claude Desktop config
**For Claude Code:**
#### Option A: Plugin (Recommended)
```bash
# In Claude Code, install the plugin:
/plugin marketplace add verygoodplugins/mcp-automem
/plugin install automem@verygoodplugins-mcp-automem
```
Only one Claude Code plugin ships in this repo: `plugins/automem` with the marketplace catalog at `.claude-plugin/marketplace.json`.
#### Option B: CLI Setup
```bash
# Installs SessionStart hook and MCP permissions
npx @verygoodplugins/mcp-automem claude-code
```
**For OpenAI Codex:**
```bash
# Add to your Codex MCP configuration
npx @verygoodplugins/mcp-automem config --format=json
# Optional: add memory-first rules to this repo
npx @verygoodplugins/mcp-automem codex
```
๐ **[Full Installation Guide](INSTALLATION.md)** for detailed MCP client and platform-specific setup
---
## New: Remote MCP via HTTP
You can now connect AutoMem to platforms that support remote MCP via **Streamable HTTP** (recommended) or **SSE** transport via an optional sidecar service (deployable to Railway or any Docker host).
- ChatGPT (Developer Mode custom connectors)
- Claude.ai (web) and Claude Mobile (iOS/Android)
- ElevenLabs Agents Platform
Quick connect URLs (after deploying the sidecar):
- **Streamable HTTP** (recommended): `https:///mcp?api_token=`
- **SSE** (legacy): `https:///mcp/sse?api_token=`
- ElevenLabs: `https:///mcp` with header `Authorization: Bearer `
See the Installation Guide for complete steps and deployment options.
### Remote MCP Platforms in Action

_ChatGPT Developer Mode: Add your MCP endpoint as a custom connector_

_ChatGPT using AutoMem memories via remote MCP_

_Claude.ai website connected to AutoMem via remote MCP_

_Claude Mobile (iOS) connected to AutoMem via remote MCP_
## What Happens Next
| Timeline | What Your AI Learns |
| ---------- | ------------------------------ |
| **Hour 1** | Starts capturing your patterns |
| **Day 1** | Learns your decision factors |
| **Day 3** | Recognizes your coding style |
| **Week 1** | Writes in your voice |
| **Week 2** | Makes decisions like you would |
## Architecture
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Your AI Platforms โ
โ Claude Desktop โ Cursor โ Claude Code โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ MCP Protocol
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ @verygoodplugins/mcp-automem (this repo) โ
โ โข Translates MCP calls โ AutoMem API โ
โ โข Platform integrations & rules โ
โ โข Handles authentication โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ HTTP API
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ AutoMem Service (separate repo) โ
โ github.com/verygoodplugins/automem โ
โ โโโโโโโโโโโโโโ โโโโโโโโโโโโโโ โ
โ โ FalkorDB โ โ Qdrant โ โ
โ โ (Graph) โ โ (Vectors) โ โ
โ โโโโโโโโโโโโโโ โโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
```
**This repo (mcp-automem):**
- MCP client that connects AI platforms to AutoMem
- Platform-specific integrations (Cursor rules, Claude Code hooks, etc.)
- Setup wizards and configuration tools
**[AutoMem service](https://github.com/verygoodplugins/automem):**
- Backend memory service with graph + vector storage
- Deployment guides (local, Railway, Docker, production)
- API server with FalkorDB + Qdrant
## Features
### Core Memory Operations
- **`store_memory`** - Save memories with content, tags, importance, metadata
- **`recall_memory`** - Hybrid search with graph expansion and context awareness:
- **Basic search**: query, multi-query, tags, time filters
- **Graph expansion**: entity expansion (multi-hop reasoning), relation following
- **Expansion filtering**: `expand_min_importance` and `expand_min_strength` to reduce noise in expanded results
- **Context hints**: language, active file, priority types/tags
- **`associate_memories`** - Create relationships (11 types: RELATES_TO, LEADS_TO, etc.)
- **`update_memory`** - Modify existing memories
- **`delete_memory`** - Remove memories
- **`check_database_health`** - Monitor service status
### Advanced Recall (v0.8.0+)
**Multi-hop Reasoning** - Answer complex questions like "What is Amanda's sister's career?"
```javascript
recall_memory({
query: "What is Amanda's sister's career?",
expand_entities: true, // Finds "Amanda's sister is Rachel" โ memories about Rachel
});
```
**Context-Aware Coding** - Recall prioritizes language and style preferences
```javascript
recall_memory({
query: "error handling patterns",
language: "typescript",
context_types: ["Style", "Pattern"],
});
```
### Platform Integrations
#### Cursor IDE
- โ
**Memory-first rule file** (`automem.mdc` in `.cursor/rules/`)
- โ
**Automatic memory recall** at conversation start
- โ
**Auto-detects project context** (package.json, git remote)
- โ
**Global user rules option** for all projects
- โ
**Simple setup** via CLI or one-click install
#### Claude Code
- โ
**MCP permissions** for memory tools
- โ
**Memory rules** in CLAUDE.md guide Claude's memory usage
- โ
**Simple setup** - just permissions, Claude decides what to store
#### Claude Desktop
- โ
Direct MCP integration
- โ
Manual and automated workflows
- โ
Full memory API access
## Why AutoMem MCP?
### vs. Building Your Own
- โ
**2 years of R&D** already done
- โ
**Research-validated** architecture (HippoRAG 2, MELODI, A-MEM)
- โ
**Working integrations** across all MCP platforms
- โ
**Active development** and community
### vs. Other Memory Solutions
- โ
**True graph relationships** (not just vector similarity)
- โ
**Universal MCP compatibility** (works with any MCP client)
- โ
**7 memory types** (Decision/Pattern/Preference/Style/Habit/Insight/Context)
- โ
**Self-hostable** ($5/month vs $150+ for alternatives)
### vs. Native AI Memory
- โ
**Persistent across sessions** (not just context window)
- โ
**Cross-platform** (same memory in Claude, Cursor, Code)
- โ
**Structured relationships** (not just RAG)
- โ
**Infinite scale** (no context window limits)
## Real-World Results
### Code Review That Knows Your Standards
```
Before AutoMem:
"Consider adding error handling here."
After AutoMem:
"Missing your standard try/except pattern. Based on your PR#127
review comments, you always wrap database calls with specific
logging for timeouts. Apply the same pattern here?"
```
### Decisions With Context
```
Before AutoMem:
"Both approaches have tradeoffs..."
After AutoMem:
"You chose PostgreSQL over MongoDB for similar use case in Q1 2024.
Your decision memo cited team expertise and operational simplicity.
Same factors apply here - go with Postgres."
```
## Documentation
### MCP Client & Integrations (this repo)
- ๐ฆ **[Installation Guide](INSTALLATION.md)** - MCP client setup for all platforms
- ๐ **[Remote MCP via SSE](INSTALLATION.md#remote-mcp-via-sse-sidecar)** - Connect ChatGPT, Claude Web/Mobile, ElevenLabs
- ๐ฏ **[Cursor Setup](INSTALLATION.md#cursor-ide)** - IDE integration with rules
- ๐ค **[Claude Code Setup](templates/CLAUDE_CODE_INTEGRATION.md)** - Memory rules integration
- ๐ **[OpenAI Codex Setup](INSTALLATION.md#openai-codex)** - Codex CLI/IDE/Cloud integration
- ๐ **[MCP Tools Reference](INSTALLATION.md#mcp-tools)** - All memory operations
### AutoMem Service (separate repo)
- ๐๏ธ **[AutoMem Service](https://github.com/verygoodplugins/automem)** - Backend repository
- ๐ **[Service Installation](https://github.com/verygoodplugins/automem/blob/main/INSTALLATION.md)** - Local, Railway, Docker deployment
- โ๏ธ **[API Documentation](https://github.com/verygoodplugins/automem#api-reference)** - REST API reference
## The Science Behind AutoMem
The AutoMem service implements cutting-edge 2025 research:
- **[HippoRAG 2](https://arxiv.org/abs/2502.14802)** (OSU, June 2025): Graph-vector approach achieves 7% better associative memory
- **A-MEM** (July 2025): Dynamic memory organization with Zettelkasten principles
- **MELODI** (DeepMind, 2025): 8x memory compression without quality loss
- **ReadAgent** (DeepMind, 2024): 20x context extension through gist memories
This MCP package provides the bridge between your AI and that research-validated memory system.
## Community & Support
- ๐ฆ **[NPM Package](https://www.npmjs.com/package/@verygoodplugins/mcp-automem)** - This MCP client
- ๐ฌ **[AutoMem Service](https://github.com/verygoodplugins/automem)** - Backend repo with deployment guides
- ๐ **[GitHub Issues](https://github.com/verygoodplugins/mcp-automem/issues)** - Bug reports and feature requests
- ๐ฆ **[@verygoodplugins](https://x.com/verygoodplugins)** - Updates and announcements
## Quick Links
### MCP Client Setup
- [Installation Guide](INSTALLATION.md) - MCP client setup for all platforms
- [Cursor Integration](INSTALLATION.md#cursor-ide) - IDE rules and configuration
- [Claude Code Setup](templates/CLAUDE_CODE_INTEGRATION.md) - Memory rules integration
- [OpenAI Codex](INSTALLATION.md#openai-codex) - Codex integration
- [Changelog](CHANGELOG.md) - Release history
### AutoMem Service
- [Service Repository](https://github.com/verygoodplugins/automem) - Backend source code
- [Service Installation](https://github.com/verygoodplugins/automem/blob/main/INSTALLATION.md) - Local, Railway, Docker deployment
## Contributing
We welcome contributions! Please:
1. Fork the repository
2. Create a feature branch
3. Make your changes with tests
4. Submit a pull request
## License
MIT - Because great memory should be free.
---
**Ready to give your AI perfect memory?**
```bash
npx @verygoodplugins/mcp-automem setup
```
_Built with obsession. Validated by neuroscience. Powered by graph theory. Works with every MCP-enabled AI._
_Designed by Jack Arturo at [Very Good Plugins](https://verygoodplugins.com)_ ๐งก
**Transform your AI from a tool into a teammate. Start now.**