Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vfdev-5/bootstrappingloss
Bootstrapping loss function implementation in pytorch
https://github.com/vfdev-5/bootstrappingloss
loss mnist pytorch
Last synced: 17 days ago
JSON representation
Bootstrapping loss function implementation in pytorch
- Host: GitHub
- URL: https://github.com/vfdev-5/bootstrappingloss
- Owner: vfdev-5
- License: mit
- Created: 2018-04-29T22:07:10.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2020-12-03T10:23:29.000Z (almost 4 years ago)
- Last Synced: 2024-10-03T12:38:21.653Z (about 1 month ago)
- Topics: loss, mnist, pytorch
- Language: Python
- Homepage:
- Size: 409 KB
- Stars: 36
- Watchers: 4
- Forks: 5
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Bootstrapping loss function implementation
based on "Training Deep Neural Networks on Noisy Labels with Bootstrapping"
[https://arxiv.org/abs/1412.6596](https://arxiv.org/abs/1412.6596)## Experiments on MNIST
Experiments on MNIST:
```bash
cd examples/mnist && python main.py run --mode hard_bootstrap --noise_fraction=0.45
cd examples/mnist && python main.py run --mode soft_bootstrap --noise_fraction=0.45
cd examples/mnist && python main.py run --mode xentropy --noise_fraction=0.45
``````
cd examples/mnist && sh run_experiments.sh >> out 2> log
```- [Experiments on TRAINS](https://app.ignite.trains.allegro.ai/projects/276a39e824794d1093ecddd8b2afb8d0)
- `WITH_TRAINS=True sh run_experiments.sh >> out 2> log`### Requirements:
- pytorch>=1.3
- torchvision>=0.4.1
- [pytorch-ignite](https://github.com/pytorch/ignite)>=0.4.2
- google fire>=0.3.1```
pip install -r requirements.txt
```