Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vi3k6i5/learning_ml
I am teaching a Learning ML workshop for some folks @ Belong.co. Creating this repo to organise the course material.
https://github.com/vi3k6i5/learning_ml
keras keras-tutorials machine-learning machine-learning-tutorials tensorflow tensorflow-tutorials
Last synced: 4 days ago
JSON representation
I am teaching a Learning ML workshop for some folks @ Belong.co. Creating this repo to organise the course material.
- Host: GitHub
- URL: https://github.com/vi3k6i5/learning_ml
- Owner: vi3k6i5
- License: mit
- Created: 2018-02-25T05:55:10.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-04T08:35:38.000Z (over 6 years ago)
- Last Synced: 2024-11-27T01:32:31.974Z (about 1 month ago)
- Topics: keras, keras-tutorials, machine-learning, machine-learning-tutorials, tensorflow, tensorflow-tutorials
- Language: Jupyter Notebook
- Homepage:
- Size: 1.41 MB
- Stars: 24
- Watchers: 4
- Forks: 14
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Learning_ML
I am teaching a Learning ML workshop for some people @ Belong.co. Creating this repo to organise the course material.I have implemented some basic machine learning and neural network Models from scratch in python and compared it with sklearn's implementation:
Models
======- Simple Linear Regression [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/1_simple_linear_regression.ipynb)
- Simple Linear Regression with Stochastic Gradient Descent [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/2_simple_linear_regression_with_sgd.ipynb)
- Multiple Linear Regression [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/3_multiple_linear_regression.ipynb)
- Multiple Linear Regression with Stochastic Gradient Descent [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/4_multiple_linear_regression_with_sgd.ipynb)
- Logistic Regression [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/5_logistic_regression.ipynb)
- Logistic Regression with Stochastic Gradient Descent [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/6_logistic_regression_with_sgd.ipynb)
- Naive Bayes Classifier Bernoulli [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/7_naive_bayes_classifier_bernoulli.ipynb)
- Naive Bayes Classifier Multinomial [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/8_naive_bayes_classifier_multinomial.ipynb)
- Hidden Markov model [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/models/9_hidden_markov_model.ipynb)
Neural_Networks
===============- Fizz Buzz in keras with Relu [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/neural_networks/keras_fizz_buzz.ipynb)
- Fizz Buzz in keras with LeakyReLU and Dropout [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/neural_networks/keras_fizz_buzz_2.ipynb)
- Fizz Buzz in Tensorflow [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/neural_networks/tensorflow_fizz_buzz.ipynb)
- Text classficiation model in keras [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/neural_networks/keras_text_classification.ipynb)
Working on more models to be put here, Reinforcement learning and Encoder decoder models.
Metrics
=======- AUC and AUC_ROC [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/metrics/compute_auc_metrics.ipynb)
- Covariance and Correlation [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/metrics/covariance_and_correlation.ipynb)
- Categorical Cross Entropy and LogLoss [Notebook](https://github.com/vi3k6i5/learning_ml/blob/master/metrics/categorical_cross_entropy_and_log_loss.ipynb)