Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/viacheslavdanilov/oct_segmentation
This repository is dedicated to the segmentation of optical coherence tomography (OCT) images and the analysis of the plaques that appear on them
https://github.com/viacheslavdanilov/oct_segmentation
deep-learning image-processing machine-learning medical-imaging segmentation
Last synced: 8 days ago
JSON representation
This repository is dedicated to the segmentation of optical coherence tomography (OCT) images and the analysis of the plaques that appear on them
- Host: GitHub
- URL: https://github.com/viacheslavdanilov/oct_segmentation
- Owner: ViacheslavDanilov
- License: mit
- Created: 2022-02-11T14:52:59.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2024-04-14T16:09:23.000Z (9 months ago)
- Last Synced: 2024-04-14T16:21:42.854Z (9 months ago)
- Topics: deep-learning, image-processing, machine-learning, medical-imaging, segmentation
- Language: Python
- Homepage: https://sites.google.com/view/viacheslav-danilov
- Size: 11.1 MB
- Stars: 2
- Watchers: 3
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![DOI](http://img.shields.io/badge/DOI-TO.ADD.DATASET-blue)](https://TO.BE.UPDATED.SOON)
[![DOI](http://img.shields.io/badge/DOI-TO.ADD.MODELS-blue)](https://TO.BE.UPDATED.SOON)
[![DOI](http://img.shields.io/badge/DOI-TO.ADD.PAPER-B31B1B)](https://TO.BE.UPDATED.SOON)# Segmentation and analysis of OCT images
## 📖 Contents
- [Introduction](#introduction)
- [Data](#data)
- [Methods](#methods)
- [Results](#results)
- [Conclusion](#conclusion)
- [Requirements](#requirements)
- [Installation](#installation)
- [How to Run](#how-to-run)
- [Data Access](#data-access)
- [How to Cite](#how-to-cite)
## 🎯 Introduction - TO BE UPDATED SOON
## 📁 Data - TO BE UPDATED SOON| ![Source image](.assets/source_img.png "Source image") | ![Pre-processed image](.assets/gray_img.png "Pre-processed image") |
|:------------------------------------------------------:|:------------------------------------------------------------------:|
| *Source image* | *Pre-processed image* |
## 🔬 Methods - TO BE UPDATED SOON
## 📈 Results - TO BE UPDATED SOON
## 🏁 Conclusion - TO BE UPDATED SOON- Operating System
- [x] macOS
- [x] Linux
- [x] Windows (limited testing carried out)
- Python 3.11.x
- Required core libraries: [environment.yaml](environment.yaml)**Step 1: Install Miniconda**
Installation guide: https://docs.conda.io/projects/miniconda/en/latest/index.html#quick-command-line-install
**Step 2: Clone the repository and change the current working directory**
``` bash
git clone https://github.com/ViacheslavDanilov/oct_segmentation.git
cd oct_segmentation
```**Step 3: Set up an environment and install the necessary packages**
``` bash
chmod +x make_env.sh
./make_env.sh
```
## 🚀 How to Run - TO BE UPDATED SOONSpecify the `data_path` and `save_dir` parameters in the [predict.yaml](configs/predict.yaml) configuration file. By default, all images within the specified `data_path` will be processed and saved to the `save_dir` directory.
To run the pipeline, execute [predict.py](src/models/smp/predict.py) from your IDE or command prompt with:
``` bash
python src/models/smp/predict.py
```
## 🔐 Data Access - TO BE UPDATED SOON
All essential components of the study, including the curated dataset and trained models, have been made publicly available:
- **Dataset:** [https://zenodo.org](https://zenodo.org)
- **Models:** [https://zenodo.org](https://zenodo.org)
## 🖊️ How to Cite - TO BE UPDATED SOON
Please cite [OUR PAPER](https://TO.BE.UPDATED.SOON) if you found our data, methods, or results helpful for your research:> Danilov V.V., Laptev V.V., Klyshnikov K.Yu., Ovcharenko E.A. (**2024**). _PAPER TITLE_. **Journal Title**. DOI: [TO.BE.UPDATED.SOON](TO.BE.UPDATED.SOON)