Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/viacheslavdanilov/oct_segmentation

This repository is dedicated to the segmentation of optical coherence tomography (OCT) images and the analysis of the plaques that appear on them
https://github.com/viacheslavdanilov/oct_segmentation

deep-learning image-processing machine-learning medical-imaging segmentation

Last synced: 8 days ago
JSON representation

This repository is dedicated to the segmentation of optical coherence tomography (OCT) images and the analysis of the plaques that appear on them

Awesome Lists containing this project

README

        

[![DOI](http://img.shields.io/badge/DOI-TO.ADD.DATASET-blue)](https://TO.BE.UPDATED.SOON)
[![DOI](http://img.shields.io/badge/DOI-TO.ADD.MODELS-blue)](https://TO.BE.UPDATED.SOON)
[![DOI](http://img.shields.io/badge/DOI-TO.ADD.PAPER-B31B1B)](https://TO.BE.UPDATED.SOON)

# Segmentation and analysis of OCT images


## 📖 Contents
- [Introduction](#introduction)
- [Data](#data)
- [Methods](#methods)
- [Results](#results)
- [Conclusion](#conclusion)
- [Requirements](#requirements)
- [Installation](#installation)
- [How to Run](#how-to-run)
- [Data Access](#data-access)
- [How to Cite](#how-to-cite)


## 🎯 Introduction - TO BE UPDATED SOON


## 📁 Data - TO BE UPDATED SOON

| ![Source image](.assets/source_img.png "Source image") | ![Pre-processed image](.assets/gray_img.png "Pre-processed image") |
|:------------------------------------------------------:|:------------------------------------------------------------------:|
| *Source image* | *Pre-processed image* |


## 🔬 Methods - TO BE UPDATED SOON


## 📈 Results - TO BE UPDATED SOON


## 🏁 Conclusion - TO BE UPDATED SOON


## 💻 Requirements

- Operating System
- [x] macOS
- [x] Linux
- [x] Windows (limited testing carried out)
- Python 3.11.x
- Required core libraries: [environment.yaml](environment.yaml)


## ⚙ Installation

**Step 1: Install Miniconda**

Installation guide: https://docs.conda.io/projects/miniconda/en/latest/index.html#quick-command-line-install

**Step 2: Clone the repository and change the current working directory**
``` bash
git clone https://github.com/ViacheslavDanilov/oct_segmentation.git
cd oct_segmentation
```

**Step 3: Set up an environment and install the necessary packages**
``` bash
chmod +x make_env.sh
./make_env.sh
```


## 🚀 How to Run - TO BE UPDATED SOON

Specify the `data_path` and `save_dir` parameters in the [predict.yaml](configs/predict.yaml) configuration file. By default, all images within the specified `data_path` will be processed and saved to the `save_dir` directory.

To run the pipeline, execute [predict.py](src/models/smp/predict.py) from your IDE or command prompt with:
``` bash
python src/models/smp/predict.py
```


## 🔐 Data Access - TO BE UPDATED SOON
All essential components of the study, including the curated dataset and trained models, have been made publicly available:
- **Dataset:** [https://zenodo.org](https://zenodo.org)
- **Models:** [https://zenodo.org](https://zenodo.org)


## 🖊️ How to Cite - TO BE UPDATED SOON
Please cite [OUR PAPER](https://TO.BE.UPDATED.SOON) if you found our data, methods, or results helpful for your research:

> Danilov V.V., Laptev V.V., Klyshnikov K.Yu., Ovcharenko E.A. (**2024**). _PAPER TITLE_. **Journal Title**. DOI: [TO.BE.UPDATED.SOON](TO.BE.UPDATED.SOON)