Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/victorgabr/ApertureComplexity

Python 3.x port of the Eclipse ESAPI plug-in script used in the study : Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aperture complexity analysis
https://github.com/victorgabr/ApertureComplexity

Last synced: 2 months ago
JSON representation

Python 3.x port of the Eclipse ESAPI plug-in script used in the study : Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aperture complexity analysis

Awesome Lists containing this project

README

        

# Aperture Complexity - IMRT/VMAT Plans

It is a Python 3.x port of the Eclipse ESAPI plug-in script.
As such, it aims to contain the complete functionality of the aperture complexity analysis.

Since it uses DICOM standard, this module extends the methodology to any TPS that exports DICOM-RP files.

More on misc.py file

## Getting Started

Calculating weighed plan complexity - only IMRT or VMAT.

python ComplexityScript.py path_to_dicom_RP_file

Plotting aperture complexity per beam aperture using matplotlib.

```python
import matplotlib.pyplot as plt

from complexity.PyComplexityMetric import (
PyComplexityMetric,
MeanAreaMetricEstimator,
AreaMetricEstimator,
ApertureIrregularityMetric,
)
from complexity.dicomrt import RTPlan

if __name__ == "__main__":
# Path to DICOM RTPLAN file - IMRT/VMAT
# pfile = "RP.dcm"
path_to_rtplan_file = "RP.dcm"

# Getting planning data from DICOM file.
plan_info = RTPlan(filename=path_to_rtplan_file)
plan_dict = plan_info.get_plan()

metrics_list = [
PyComplexityMetric,
MeanAreaMetricEstimator,
AreaMetricEstimator,
ApertureIrregularityMetric,
]
units = ["CI [mm^-1]", "mm^2", "mm^2", "dimensionless"]

# plotting results
for unit, cc in zip(units, metrics_list):
cc_obj = cc()
# compute per plan
plan_metric = cc_obj.CalculateForPlan(None, plan_dict)
print(f"{cc.__name__} Plan Metric - {plan_metric} {unit}")
for k, beam in plan_dict["beams"].items():
# skip setup fields
if beam["TreatmentDeliveryType"] == "TREATMENT" and beam["MU"] > 0:
fig = plt.figure(figsize=(6, 6))
# create a subplot
ax = fig.add_subplot(111)
cpx_beam_cp = cc_obj.CalculateForBeamPerAperture(
None, plan_dict, beam
)
ax.plot(cpx_beam_cp)
ax.set_xlabel("Control Point")
ax.set_ylabel(f"${unit}$")
txt = f"{file_name} - Beam name: {beam['BeamName']} - {cc.__name__}"
ax.set_title(txt)
plt.show()

```
## Example result
Beam 1

![beam_1_complexity](https://user-images.githubusercontent.com/6777517/37774893-336082a8-2dc0-11e8-9c3f-6b15d8488d9f.png)


## Requirements
pydicom, numpy, pandas, pytest for unit testing

## Installing
python setup.py install

## Contributing

Any bug fixes or improvements are welcome.

## Author
Victor Gabriel Leandro Alves, D.Sc.
Copyright 2017-2018

## Acknowledgments

University of Michigan, Radiation Oncology
[https://github.com/umro/Complexity](https://github.com/umro/Complexity)