An open API service indexing awesome lists of open source software.

https://github.com/victorgoubet/techsage

Leverage the power of multi-agent AI to fuel your daily tech, programming, and architecture insights.
https://github.com/victorgoubet/techsage

crewai langchain llm multiagent multiagent-systems ollama openai python python3 tech technical-monitoring

Last synced: 6 months ago
JSON representation

Leverage the power of multi-agent AI to fuel your daily tech, programming, and architecture insights.

Awesome Lists containing this project

README

          


TechSage Logo

TechSage 🤖


TechSage is a multi-agent LLM platform delivering daily insights on technology, programming, cloud architecture, and more. Utilize OpenAI's LLMs or local models via Ollama, powered by CrewAI's multi-agent system, to stay ahead in the tech world.


Prerequisites
Installation
Configure
Launch
Docker


## Prerequisites 💡

- Python >= 3.10, <= 3.13
- `ollama` (if using a local model) [install here](https://ollama.com/download/)
- May need to install the c++ build tool if you don't already have it

## Installation 🛠️

To install TechSage, run:

```bash
pip install https://github.com/VictorGoubet/techsage/archive/refs/tags/v1.tar.gz
```

*Replace `v1` with the release you want to use.*

## Configure [optional] ⚙️

Execute this command only if you want to use the shell interface with specific configuration. For the Streamlit interface, you can configure everything directly within it.

```bash
configure-sage
```

### Configuration Options:

- `--model `: Name of the model to use (default: `llama3:8b`).
- `--model_url `: API URL of the model to use (default: `http://localhost:11434/v1`).
- `--verbose <1 or 0>`: Verbose level during configuration (default: 0).
- `--local `: Use a local model with Ollama or an OpenAI API model (default: True).
- `--openai_api_key `: Your OpenAI API key (required if local mode is disabled or using crew memory).
- `--google_search_api_key `: Delpha Google Search API key. If empty, a local Google search will be performed. Modify `api_google_search` method in `tools.py` to use another API. A DuckDuckGo tool is also available.

## Launch 🚀

After setting up, launch the script with admin rights. If no configuration is provided, the default configuration will be used:

```sh
launch-sage
```

**Note**: Be sure to have **ollama running** if you intend to use local models

### Launch Options:

- `--streamlit `: If `true`, the Streamlit interface will be used; otherwise, a shell interface will appear.


## Docker 🐋

Lazy to setup everything ? Just use the dedicated docker image and go to [http://localhost:8501](http://localhost:8501)

### CPU only

```bash
docker run -d -v ollama:/root/.ollama -p 8501:8501 victorgoubet/techsage:latest
```

### Nvidia GPU

First install GPU drivers for docker:

- **Linux**: [NVIDIA Container Toolkit⁠](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
- **Windows**: [Nvidia Cuda on WSL](https://learn.microsoft.com/fr-fr/windows/ai/directml/gpu-cuda-in-wsl)
- **Mac**: *Not supported*

```bash
docker run -d --gpus=all -v ollama:/root/.ollama -p 8501:8501 victorgoubet/techsage:latest
```

*Note: GPU version not really stable*



## App preview



Techsage app

---