https://github.com/victorkifer/ecg-af-detection-physionet-2017
AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017
https://github.com/victorkifer/ecg-af-detection-physionet-2017
atrial-fibrillation ecg machine-learning physionet qrs-detection
Last synced: about 2 months ago
JSON representation
AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017
- Host: GitHub
- URL: https://github.com/victorkifer/ecg-af-detection-physionet-2017
- Owner: victorkifer
- License: gpl-3.0
- Created: 2019-01-08T08:09:23.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2019-01-08T09:21:46.000Z (over 6 years ago)
- Last Synced: 2025-03-25T09:49:28.702Z (2 months ago)
- Topics: atrial-fibrillation, ecg, machine-learning, physionet, qrs-detection
- Language: Python
- Size: 30.1 MB
- Stars: 24
- Watchers: 1
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
- Authors: AUTHORS.txt
Awesome Lists containing this project
README
# The challenge
PhysioNet Computing in Cardiology Challenge 2017: Atrial fibrillation detection from a short single lead ECG recording
https://physionet.org/challenge/2017/
The official results:
https://physionet.org/challenge/2017/results.csv
Our best result is 0.77.
# The team
University of Valencia: Computational Multiscale Simulation Lab (CoMMLab).
Team members:
- [Miguel Lozano](https://www.uv.es/mlozano/)
- Viktor Kifer
- [Francisco Martinez-Gil](https://www.uv.es/uvweb/universidad/es/ficha-persona-1285950309813.html?p2=fmgil)