Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vietanhdev/anylabeling
Effortless AI-assisted data labeling with AI support from YOLO, Segment Anything (SAM+SAM2), MobileSAM!!
https://github.com/vietanhdev/anylabeling
auto-labeling computer-vision labeling labeling-tool mobilesam onnx sam2 segment-anything segment-anything-2 yolo yolov8
Last synced: 4 days ago
JSON representation
Effortless AI-assisted data labeling with AI support from YOLO, Segment Anything (SAM+SAM2), MobileSAM!!
- Host: GitHub
- URL: https://github.com/vietanhdev/anylabeling
- Owner: vietanhdev
- License: gpl-3.0
- Created: 2023-04-08T18:48:43.000Z (almost 2 years ago)
- Default Branch: master
- Last Pushed: 2024-11-24T03:47:18.000Z (about 2 months ago)
- Last Synced: 2024-12-31T13:01:57.213Z (11 days ago)
- Topics: auto-labeling, computer-vision, labeling, labeling-tool, mobilesam, onnx, sam2, segment-anything, segment-anything-2, yolo, yolov8
- Language: Python
- Homepage: https://anylabeling.nrl.ai
- Size: 10.8 MB
- Stars: 2,453
- Watchers: 22
- Forks: 254
- Open Issues: 71
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-segment-anything-extensions - Repo
- awesome-object-detection-datasets - AnyLabeling - labeling. (Summary)
- StarryDivineSky - vietanhdev/anylabeling
- awesome-llm-and-aigc - AnyLabeling
- awesome-llm-and-aigc - AnyLabeling
- awesome-yolo-object-detection - AnyLabeling - assisted data labeling with AI support from YOLO, Segment Anything, MobileSAM!! [anylabeling.nrl.ai](https://anylabeling.nrl.ai/) (Applications)
- awesome-yolo-object-detection - AnyLabeling - assisted data labeling with AI support from YOLO, Segment Anything, MobileSAM!! [anylabeling.nrl.ai](https://anylabeling.nrl.ai/) (Applications)
- Awesome-Segment-Anything - [**AnyLabeling** - labeling (Application / Labeling)
README
🌟 AnyLabeling 🌟
Effortless data labeling with AI support from YOLO and Segment Anything!
AnyLabeling = LabelImg + Labelme + Improved UI + Auto-labeling
![](https://user-images.githubusercontent.com/18329471/234640541-a6a65fbc-d7a5-4ec3-9b65-55305b01a7aa.png)
[![PyPI](https://img.shields.io/pypi/v/anylabeling)](https://pypi.org/project/anylabeling)
[![license](https://img.shields.io/github/license/vietanhdev/anylabeling.svg)](https://github.com/vietanhdev/anylabeling/blob/master/LICENSE)
[![open issues](https://isitmaintained.com/badge/open/vietanhdev/anylabeling.svg)](https://github.com/vietanhdev/anylabeling/issues)
[![Pypi Downloads](https://pepy.tech/badge/anylabeling)](https://pypi.org/project/anylabeling/)
[![Documentation](https://img.shields.io/badge/Read-Documentation-green)](https://anylabeling.nrl.ai/)
[![Follow](https://img.shields.io/badge/+Follow-vietanhdev-blue)]([[https://anylabeling.nrl.ai/](https://twitter.com/vietanhdev)](https://twitter.com/vietanhdev))[![AnyLearning-Banner](https://github.com/user-attachments/assets/c2de3534-3e04-439b-bdca-19f6fcb9fc61)](https://anylearning.nrl.ai/)
[![ai-flow 62b3c222](https://github.com/user-attachments/assets/a47a0eea-ec59-4c59-9733-737b1977e56b)](https://anylearning.nrl.ai/)
**Auto Labeling with Segment Anything**
- **Youtube Demo:** [https://www.youtube.com/watch?v=5qVJiYNX5Kk](https://www.youtube.com/watch?v=5qVJiYNX5Kk)
- **Documentation:** [https://anylabeling.nrl.ai](https://anylabeling.nrl.ai)**Features:**
- [x] Image annotation for polygon, rectangle, circle, line and point.
- [x] Auto-labeling YOLOv8, Segment Anything (SAM, SAM2).
- [x] Text detection, recognition and KIE (Key Information Extraction) labeling.
- [x] Multiple languages availables: English, Vietnamese, Chinese.## Install and Run
### 1. Download and run executable
- Download and run newest version from [Releases](https://github.com/vietanhdev/anylabeling/releases).
- For MacOS:
- After installing, go to Applications folder
- Right click on the app and select Open
- From the second time, you can open the app normally using Launchpad### Install from Pypi
- Requirements: Python 3.10+. Recommended: Python 3.12.
- Recommended: [Miniconda/Anaconda](https://docs.conda.io/en/latest/miniconda.html).- Create environment:
```bash
conda create -n anylabeling python=3.12
conda activate anylabeling
```- **(For macOS only)** Install PyQt5 using Conda:
```bash
conda install -c conda-forge pyqt==5.15.9
```- Install anylabeling:
```bash
pip install anylabeling # or pip install anylabeling-gpu for GPU support
```- Start labeling:
```bash
anylabeling
```## Documentation
**Website:** [https://anylabeling.nrl.ai](https://anylabeling.nrl.ai)/
### Applications
| **Object Detection** | **Recognition** | **Facial Landmark Detection** | **2D Pose Estimation** |
| :---: | :---: | :---: | :---: |
| | | | |
| **2D Lane Detection** | **OCR** | **Medical Imaging** | **Instance Segmentation** |
| | | | |
| **Image Tagging** | **Rotation** | **And more!** |
| | | Your applications here! |
## Development- Install packages:
```bash
pip install -r requirements-dev.txt
# or pip install -r requirements-macos-dev.txt for MacOS
```- Generate resources:
```bash
pyrcc5 -o anylabeling/resources/resources.py anylabeling/resources/resources.qrc
```- Run app:
```bash
python anylabeling/app.py
```## Build executable
- Install PyInstaller:
```bash
pip install -r requirements-dev.txt
```- Build:
```bash
bash build_executable.sh
```- Check the outputs in: `dist/`.
## Contribution
If you want to contribute to **AnyLabeling**, please read [Contribution Guidelines](https://anylabeling.nrl.ai/docs/contribution).
## Star history
[![Star History Chart](https://api.star-history.com/svg?repos=vietanhdev/anylabeling&type=Date)](https://star-history.com/#vietanhdev/anylabeling&Date)
## References
- Labeling UI built with ideas and components from [LabelImg](https://github.com/heartexlabs/labelImg), [LabelMe](https://github.com/wkentaro/labelme).
- Auto-labeling with [Segment Anything Models](https://segment-anything.com/), [MobileSAM](https://github.com/ChaoningZhang/MobileSAM).
- Auto-labeling with [YOLOv8](https://github.com/ultralytics/ultralytics).