https://github.com/vikashplus/mabel
Manipulation Benchmarks for Learning
https://github.com/vikashplus/mabel
Last synced: about 2 months ago
JSON representation
Manipulation Benchmarks for Learning
- Host: GitHub
- URL: https://github.com/vikashplus/mabel
- Owner: vikashplus
- License: apache-2.0
- Created: 2020-04-14T00:01:03.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-06-11T14:55:30.000Z (almost 5 years ago)
- Last Synced: 2025-03-23T18:06:15.731Z (2 months ago)
- Language: Python
- Size: 1.82 MB
- Stars: 4
- Watchers: 5
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MABEL
MAnipulation BEnchmarks for Learning`MABEL` is a collection of environments/tasks for benchmarking manipulation, simulated with the [Mujoco](http://www.mujoco.org/) physics engine and wrapped in the [OpenAI `gym`](https://gym.openai.com/) API. 'MABEL' constains following tasks
Pointing | Pouring | Relocation | Zipping
:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:
 |  |  | ## Getting Started
`MABEL` uses git submodules to resolve dependencies. Please follow steps exactly as below to install correctly.0. Ensure you have access these repositories - [Franka_sim](https://github.com/vikashplus/franka_sim), [Furniture_sim](https://github.com/vikashplus/furniture_sim) and [Scene_sim](https://github.com/vikashplus/scene_sim)
1. Clone this repo with pre-populated submodule dependencies
```
$ git clone --recursive [email protected]:vikashplus/mabel.git
```
2. Update submodules
```
$ cd mabel
$ git submodule update --remote
```
3. Add repo to pythonpath by updating `~/.bashrc` or `~/.bash_profile`
```
export PYTHONPATH=":$PYTHONPATH"
```
4. Follow install instructions from [mjrl](https://github.com/aravindr93/mjrl) to get model free agents for `MABEL`
5. To visualize an env using a random policy
```
MJPL python mabel/mabel_agents/mjrl/examine_policy.py -i mabel -e MableReachRandom-v0
```
5. To visualize a trained `mjrl` agent's policy
```
MJPL python mabel/mabel_agents/mjrl/examine_policy.py -i mabel -e MableReachRandom-v0 -p
```