Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vikashpr/18csc305j-ai

SRMIST Kattankulathur Artificial Intelligence-18CSC305J lab exercises implemented in python
https://github.com/vikashpr/18csc305j-ai

18csc305j ai-18csc305j ai-lab ai-lab-python artificial-intelligence artificial-intelligence-lab-python python srm-university srmist-ai-lab vikashpr

Last synced: 2 months ago
JSON representation

SRMIST Kattankulathur Artificial Intelligence-18CSC305J lab exercises implemented in python

Awesome Lists containing this project

README

        

# 18CSC305J-AI-LAB

[![Hits](https://hits.sh/github.com/VikashPR/18CSC305J-AI.svg?extraCount=3588)](https://hits.sh/github.com/VikashPR/18CSC305J-AI/)

![Python](https://img.shields.io/badge/Python-FFD43B?style=for-the-badge&logo=python&logoColor=blue)
| Ex | Description | Link |
| --- | --- | --- |
| 1 | Implementation of toy problems | [View➚](https://github.com/VikashPR/AI/blob/main/ToyProblem.py) |
| 2 | Developing agent programs for real world problems | [View➚](https://github.com/VikashPR/AI/blob/main/Grapy-Coloring.py) |
| 3 | Implementation of constraint satisfaction problems | [View➚](https://github.com/VikashPR/AI/blob/main/CSP.py) |
| 4 | Implementation and Analysis of DFS and BFS for same application | [View➚](https://github.com/VikashPR/AI/blob/main/BFS-DFS.py) |
| 5 | Developing Best first search and A* Algorithm for real world problems | [View➚](https://github.com/VikashPR/AI/blob/main/A_Star-BFS.py) |
| 6.1 | Implementation of uncertain methods for an application (Fuzzy logic) | [View➚](https://github.com/VikashPR/AI/blob/main/FuzzyLogic.py) |
| 6.2 | Implementation of uncertain methods for an application (Montey Hall) | [View➚](https://github.com/VikashPR/AI/blob/main/MontyHall.py) |
| 7 | Implementation of unification and resolution for real world problems. | [View➚](https://github.com/VikashPR/AI/tree/main/Unification-Resolution) |
| 8 | Implementation of learning algorithms for an application | [View➚](https://github.com/VikashPR/AI/tree/main/Learning-Algorithms) |
| 9 | Implementation of NLP programs | [View➚](https://github.com/VikashPR/AI/blob/main/NLP.py) |
| 10 | Applying deep learning methods to solve an application | [View➚](https://github.com/VikashPR/AI/blob/main/DeepLearning.py) |

## More contributions by the same author 🚀
| Subject Code | Subject Name| Repo Link |
| -- | -- | -- |
| 18CSC304J-CD | Compiler Design | [View➚](https://github.com/VikashPR/18CSC304J-CD) |
| 18CSC303J-DBMS | Database management system | [View➚](https://github.com/VikashPR/18CSC303J-DBMS) |
| 18CSE316J-DEVOPS | Essentials in Cloud and Devops | [View➚](https://github.com/VikashPR/18CSE316J-DEVOPS) |

## Credit for being partners in crime



ChatGPT


Github Co-Pilot

## Contribution Guidelines

**Types of Contributions:**
- Pull Requests: Propose new features or changes to existing code. Make sure your code follows our conventions and does not break existing functionality. Test your code thoroughly and add the programming language used and the version.
- Issues: Report bugs or suggest new features. Provide detailed information.

**Contribution Process:**
1. Fork the repository.
2. Clone the forked repository to your local machine.
3. Create a new branch for your changes.
4. Make changes and commit them to your branch.
5. Push your branch to your forked repository.
6. Submit a pull request to the main repository.