Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vincentherrmann/pytorch-wavenet
An implementation of WaveNet with fast generation
https://github.com/vincentherrmann/pytorch-wavenet
Last synced: about 2 months ago
JSON representation
An implementation of WaveNet with fast generation
- Host: GitHub
- URL: https://github.com/vincentherrmann/pytorch-wavenet
- Owner: vincentherrmann
- License: mit
- Created: 2017-04-19T21:29:22.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2020-09-17T15:50:34.000Z (over 4 years ago)
- Last Synced: 2024-08-04T00:11:32.151Z (5 months ago)
- Language: Jupyter Notebook
- Homepage:
- Size: 263 MB
- Stars: 956
- Watchers: 30
- Forks: 225
- Open Issues: 31
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-pytorch-list-CNVersion - pytorch-wavenet
- Awesome-pytorch-list - pytorch-wavenet
README
# pytorch-wavenet
This is an implementation of the WaveNet architecture, as described in the [original paper](https://arxiv.org/abs/1609.03499).## Features
- Automatic creation of a dataset (training and validation/test set) from all sound files (.wav, .aiff, .mp3) in a directory
- Efficient multithreaded data loading
- Logging to TensorBoard (Training loss, validation loss, validation accuracy, parameter and gradient histograms, generated samples)
- Fast generation, as introduced [here](https://arxiv.org/abs/1611.09482)## Requirements
- python 3
- pytorch 0.3
- numpy
- librosa
- jupyter
- tensorflow for TensorBoard logging## Demo
For an introduction on how to use this model, take a look at the [WaveNet demo notebook](https://github.com/vincentherrmann/pytorch-wavenet/blob/master/WaveNet_demo.ipynb).
You can find audio clips generated by a simple trained model in the [generated samples directory](https://github.com/vincentherrmann/pytorch-wavenet/tree/master/generated_samples)