An open API service indexing awesome lists of open source software.

https://github.com/vinhtantran/puls

Partitioning Using Local Subregions
https://github.com/vinhtantran/puls

clustering functional-data-analysis monothetic

Last synced: 4 months ago
JSON representation

Partitioning Using Local Subregions

Awesome Lists containing this project

README

          

---
output: github_document
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```

# puls

[![CRAN status](https://www.r-pkg.org/badges/version/puls)](https://CRAN.R-project.org/package=puls)
[![metacran downloads](https://cranlogs.r-pkg.org/badges/puls)](https://cran.r-project.org/package=puls)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![R-CMD-check](https://github.com/vinhtantran/puls/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/vinhtantran/puls/actions/workflows/R-CMD-check.yaml)

Partitioning using local subregions (PULS) is a clustering technique designed to explore subregions of functional data for information to split the curves into clusters.

## Installation

You can install the released version of puls from [CRAN](https://CRAN.R-project.org) with:

``` r
install.packages("puls")
```

And the development version from [GitHub](https://github.com/) with:

``` r
# install.packages("remotes")
remotes::install_github("vinhtantran/puls")
```
## Example

This is a basic example which shows you how to solve a common problem:

```{r example}
library(puls)
library(fda)
# Build a simple fd object from already smoothed smoothed_arctic
data(smoothed_arctic)
NBASIS <- 300
NORDER <- 4
y <- t(as.matrix(smoothed_arctic[, -1]))
splinebasis <- create.bspline.basis(rangeval = c(1, 365),
nbasis = NBASIS,
norder = NORDER)
fdParobj <- fdPar(fdobj = splinebasis,
Lfdobj = 2,
# No need for any more smoothing
lambda = .000001)
yfd <- smooth.basis(argvals = 1:365, y = y, fdParobj = fdParobj)

Jan <- c(1, 31); Feb <- c(31, 59); Mar <- c(59, 90)
Apr <- c(90, 120); May <- c(120, 151); Jun <- c(151, 181)
Jul <- c(181, 212); Aug <- c(212, 243); Sep <- c(243, 273)
Oct <- c(273, 304); Nov <- c(304, 334); Dec <- c(334, 365)

intervals <-
rbind(Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

PULS4_pam <- PULS(toclust.fd = yfd$fd, intervals = intervals,
nclusters = 4, method = "pam")
PULS4_pam
```

You can make a tree plot:

```{r tree}
plot(PULS4_pam)
```

Or, a wave plot:

```{r wave}
ggwave(toclust.fd = yfd$fd, intervals = intervals, puls = PULS4_pam)
```