An open API service indexing awesome lists of open source software.

https://github.com/viridityzhu/hifihr

DAGM GCPR 2023 Paper: HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture
https://github.com/viridityzhu/hifihr

3d-from-images 3d-hand-reconstruction 3d-reconstruction

Last synced: about 2 months ago
JSON representation

DAGM GCPR 2023 Paper: HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture

Awesome Lists containing this project

README

        




HiFiHR: High-Fidelity Hand Reconstruction


Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture

Development Time:
WakaTime +
WakaTime



GitHub top language
GitHub code size in bytes
GitHub commit activity


---

## ๐Ÿ“’ Table of Contents

- [๐Ÿ“ Overview](#-overview)
- [๐Ÿš€ Getting Started](#-getting-started)
- [๐Ÿ›  Training and Evaluation](#-training-and-evaluation)
- [๐Ÿ‘ Acknowledgments](#-acknowledgements)
- [๐Ÿ“„ Citation](#-citation)

## ๐Ÿ“ Overview

![demonstration](./doc/demonstration.jpg)
| FreiHAND | HO-3Dv2 |
| ---- | ---- |
| ![freihand](./doc/qualitative_frei.jpg) | ![ho3d](./doc/fig-vis-ho3d.jpg) |

### ๐ŸŽฏ Features

- **Objective:** Generate realistic 3D hand meshes with accurate textures from a single image.

- **Supervision Levels:** Utilize self-supervision, weak supervision, and full supervision.

- **Contributions of High-Fidelity Textures:** Enhance hand pose and shape estimation with learned high-fidelity textures.

- **Benchmark Performance:** Experimental evaluations on public benchmarks (FreiHAND and HO-3D). Outperform state-of-the-art methods in texture quality, while maintaining accurate pose and shape estimation.

## ๐Ÿš€ Getting Started

### ๐Ÿ“ฆ Environment

This code is developed under Python 3.9, Pytorch 1.13, and cuda 11.7.

- (Optional) You may need to wake up your conda:

```sh
conda update -n base -c default conda
conda config --append channels conda-forge
conda update --all
```

- Create the environment and install the requirements:

```sh
conda env remove -n hifihr
conda create -n hifihr python=3.9
conda activate hifihr
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.7 -c pytorch -c nvidia

conda install -c fvcore -c iopath -c conda-forge fvcore iopath
# conda install pytorch3d -c pytorch3d
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

conda install tqdm tensorboard transforms3d scikit-image timm trimesh rtree opencv matplotlib rich lpips
pip install chumpy
```

### ๐Ÿ“‚ Datasets

For 3D hand reconstruction task on the FreiHAND dataset:
- Download the FreiHAND dataset from the [website](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html).

For HO3D dataset:
- Download the HO-3Dv2 dataset from the [website](https://www.tugraz.at/index.php?id=40231).

## ๐Ÿ›  Training and Evaluation

Pre-trained models can be downloaded from the [Google Drive link](https://drive.google.com/drive/folders/16f-qZiTQnVGNJqLiAezd-amhYwO2JsxY?usp=sharing).

### ๐Ÿงช FreiHAND

- Evaluation:

```
python train_hrnet.py --config_json config/FreiHAND/evaluation.json
```

- Training:

```
python train_hrnet.py --config_json config/FreiHAND/full_rhd_freihand.json
```

Note: remember to check and inplace the dirs and files in the ```*.json``` files.

### ๐Ÿงช HO3D

- Evaluation:

```
python3 train_hrnet.py --config_json config/HO3D/evaluation.json
```
- Training: Please refer to FreiHAND training scripts.

## ๐Ÿ‘ Acknowledgements

We would like to thank to the great project in [S2HAND](https://github.com/TerenceCYJ/S2HAND).

## ๐Ÿ“„ Citation

If you find this code useful for your research, please consider citing:

```bibtex
@inproceedings{zhu2023hifihr,
title={HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture},
author={Zhu, Jiayin and Zhao, Zhuoran and Yang, Linlin and Yao, Angela},
booktitle={German Conference on Pattern Recognition},
year={2023},
organization={Springer}
}
```