https://github.com/viridityzhu/hifihr
DAGM GCPR 2023 Paper: HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture
https://github.com/viridityzhu/hifihr
3d-from-images 3d-hand-reconstruction 3d-reconstruction
Last synced: about 2 months ago
JSON representation
DAGM GCPR 2023 Paper: HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture
- Host: GitHub
- URL: https://github.com/viridityzhu/hifihr
- Owner: viridityzhu
- Created: 2023-02-13T14:25:58.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-02-03T08:05:55.000Z (over 1 year ago)
- Last Synced: 2024-02-03T09:23:36.078Z (over 1 year ago)
- Topics: 3d-from-images, 3d-hand-reconstruction, 3d-reconstruction
- Language: Python
- Homepage:
- Size: 30.3 MB
- Stars: 16
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
HiFiHR: High-Fidelity Hand ReconstructionEnhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture
Development Time:
+
![]()
![]()
![]()
![]()
---
## ๐ Table of Contents
- [๐ Overview](#-overview)
- [๐ Getting Started](#-getting-started)
- [๐ Training and Evaluation](#-training-and-evaluation)
- [๐ Acknowledgments](#-acknowledgements)
- [๐ Citation](#-citation)## ๐ Overview

| FreiHAND | HO-3Dv2 |
| ---- | ---- |
|  |  |### ๐ฏ Features
- **Objective:** Generate realistic 3D hand meshes with accurate textures from a single image.
- **Supervision Levels:** Utilize self-supervision, weak supervision, and full supervision.
- **Contributions of High-Fidelity Textures:** Enhance hand pose and shape estimation with learned high-fidelity textures.
- **Benchmark Performance:** Experimental evaluations on public benchmarks (FreiHAND and HO-3D). Outperform state-of-the-art methods in texture quality, while maintaining accurate pose and shape estimation.
## ๐ Getting Started
### ๐ฆ Environment
This code is developed under Python 3.9, Pytorch 1.13, and cuda 11.7.
- (Optional) You may need to wake up your conda:
```sh
conda update -n base -c default conda
conda config --append channels conda-forge
conda update --all
```- Create the environment and install the requirements:
```sh
conda env remove -n hifihr
conda create -n hifihr python=3.9
conda activate hifihr
conda install pytorch=1.13.0 torchvision pytorch-cuda=11.7 -c pytorch -c nvidiaconda install -c fvcore -c iopath -c conda-forge fvcore iopath
# conda install pytorch3d -c pytorch3d
pip install "git+https://github.com/facebookresearch/pytorch3d.git"conda install tqdm tensorboard transforms3d scikit-image timm trimesh rtree opencv matplotlib rich lpips
pip install chumpy
```### ๐ Datasets
For 3D hand reconstruction task on the FreiHAND dataset:
- Download the FreiHAND dataset from the [website](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html).For HO3D dataset:
- Download the HO-3Dv2 dataset from the [website](https://www.tugraz.at/index.php?id=40231).## ๐ Training and Evaluation
Pre-trained models can be downloaded from the [Google Drive link](https://drive.google.com/drive/folders/16f-qZiTQnVGNJqLiAezd-amhYwO2JsxY?usp=sharing).
### ๐งช FreiHAND
- Evaluation:
```
python train_hrnet.py --config_json config/FreiHAND/evaluation.json
```- Training:
```
python train_hrnet.py --config_json config/FreiHAND/full_rhd_freihand.json
```Note: remember to check and inplace the dirs and files in the ```*.json``` files.
### ๐งช HO3D
- Evaluation:
```
python3 train_hrnet.py --config_json config/HO3D/evaluation.json
```
- Training: Please refer to FreiHAND training scripts.## ๐ Acknowledgements
We would like to thank to the great project in [S2HAND](https://github.com/TerenceCYJ/S2HAND).
## ๐ Citation
If you find this code useful for your research, please consider citing:
```bibtex
@inproceedings{zhu2023hifihr,
title={HiFiHR: Enhancing 3D Hand Reconstruction from a Single Image via High-Fidelity Texture},
author={Zhu, Jiayin and Zhao, Zhuoran and Yang, Linlin and Yao, Angela},
booktitle={German Conference on Pattern Recognition},
year={2023},
organization={Springer}
}
```