Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vishalshar/awesome_ML_AI_RSS_feed
Awesome curated RSS feed links related to Machine Learning, Artificial Intelligence, Reinforcement Learning
https://github.com/vishalshar/awesome_ML_AI_RSS_feed
List: awesome_ML_AI_RSS_feed
Last synced: 2 months ago
JSON representation
Awesome curated RSS feed links related to Machine Learning, Artificial Intelligence, Reinforcement Learning
- Host: GitHub
- URL: https://github.com/vishalshar/awesome_ML_AI_RSS_feed
- Owner: vishalshar
- Created: 2020-07-26T00:41:59.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-12-12T15:16:44.000Z (about 3 years ago)
- Last Synced: 2024-05-20T21:52:30.021Z (8 months ago)
- Size: 166 KB
- Stars: 146
- Watchers: 5
- Forks: 12
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-artificial-intelligence - Awesome RSS feed - Awesome curated RSS feed links related to Machine Learning, Artificial Intelligence, Reinforcement Learning. Import rssowl.opml file to your favourite RSS feeder to access below links (Awesome lists for learning AI)
README
# Awesome RSS feed
Awesome curated RSS feed links related to Machine Learning, Artificial Intelligence, Reinforcement Learning. Import rssowl.opml file to your favourite RSS feeder to access below links# Machine Learning
* Cube dev https://blog.statsbot.co/ [(RSS)](https://blog.statsbot.co/feed)
* Machine Learning Mastery https://machinelearningmastery.com/ [(RSS)](http://machinelearningmastery.com/blog/feed)
* ML Uber Engineering https://eng.uber.com/fiberdistributed/ [(RSS)](https://eng.uber.com/tag/machine-learning/feed)
* AWS Machine Learning https://aws.amazon.com/blogs/ [(RSS)](https://aws.amazon.com/blogs/machine-learning/feed)
* arXiv.org cs.ML https://arxiv.org/list/cs.LG/recent [(RSS)](http://arxiv.org/rss/cs.LG)
* arXiv.org stat.ML https://arxiv.org/list/stat.ML/recent [(RSS)](http://arxiv.org/rss/stat.ML)
* ML Reddit https://www.reddit.com/r/MachineLearning/ [(RSS)](https://www.reddit.com/r/MachineLearning/.rss)
* ML in production https://mlinproduction.com/ [(RSS)](https://mlinproduction.com/feed)
* Blog Jay Alammar http://jalammar.github.io/ [(RSS)](https://jalammar.github.io/feed.xml)
* JMLR recent papers http://www.jmlr.org/jmlr.xml [(RSS)](http://proceedings.mlr.press//feed.xml)
* Blog Distill https://distill.pub [(RSS)](https://distill.pub/rss.xml)
* Blog inFERENCe https://www.inference.v [(RSS)](https://www.inference.vc/rss)# Artificial Intelligence
* Blog AI Trends https://www.aitrends.com/ [(RSS)](https://www.aitrends.com/feed)
* Blog AI Weirdness https://aiweirdness.com/ [(RSS)](https://aiweirdness.com/rss)
* Berkeley Artificial Intelligence Research https://bair.berkeley.edu/blog/ [(RSS)](https://bair.berkeley.edu/blog/feed.xml)
* Medium - Artificial Intelligence Magazine https://becominghuman.ai/ [(RSS)](https://becominghuman.ai/feed)
* MIT AI news http://news.mit.edu/ [(RSS)](http://news.mit.edu/rss/topic/artificial-intelligence2)
* NVIDIA AI Blog https://blogs.nvidia.com/ [(RSS)](http://feeds.feedburner.com/nvidiablog)
* Blog AI Paper Review David Stutz https://davidstutz.de/ [(RSS)](http://davidstutz.de/feed)
* AI Reddit https://www.reddit.com/r/artificial/ [(RSS)](https://www.reddit.com/r/artificial/.rss)
* Reddit NN, DL, ML https://www.reddit.com/r/neuralnetworks/ [(RSS)](https://www.reddit.com/r/neuralnetworks/.rss?format=xml)
* Science Daily AI News https://www.sciencedaily.com/ [(RSS)](https://www.sciencedaily.com/rss/computers_math/artificial_intelligence.xml)
* Blog AI ML - Seita's Place https://danieltakeshi.github.io/ [(RSS)](https://danieltakeshi.github.io/feed.xml)
* Blog literature review https://vitalab.github.io/ [(RSS)](https://vitalab.github.io/feed.xml)
* Blog Andrej Karpathy https://medium.com/@karpathy [(RSS)](https://medium.com/feed/@karpathy)
* OpenAI Blog https://openai.com/blog/ [(RSS)](https://openai.com/blog/rss)
* Microsoft Research Blog https://www.microsoft.com/en-us/research/blog/ [(RSS)](https://www.microsoft.com/en-us/research/feed)
* Google AI Blog https://ai.googleblog.com/ [(RSS)](http://feeds.feedburner.com/blogspot/gJZg)
* Blog Fast AI http://nlp.fast.ai/ [(RSS)](https://www.fast.ai/atom.xml)# Reinforcement Learning
* RL Reddit https://www.reddit.com/r/reinforcementlearning/ [(RSS)](https://www.reddit.com/r/reinforcementlearning/.rss?format=xml)
* RL Weekly https://www.getrevue.co/profile/seungjaeryanlee [(RSS)](https://www.getrevue.co/profile/seungjaeryanlee?format=rss)
* RL paper review https://dtransposed.github.io/ [(RSS)](https://dtransposed.github.io/feed.xml)# Data Science
* Data Science Central https://www.datasciencecentral.com/ [(RSS)](http://feeds.feedburner.com/FeaturedBlogPosts-DataScienceCentral?format=xml)
* Blog John Cook https://www.johndcook.com/blog/services-2/ [(RSS)](https://www.johndcook.com/blog/feed)