Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vita-group/enlightengan

[IEEE TIP] "EnlightenGAN: Deep Light Enhancement without Paired Supervision" by Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, Zhangyang Wang
https://github.com/vita-group/enlightengan

gan generative-adversarial-networks low-light low-light-enhance pytorch unsupervised-learning

Last synced: about 20 hours ago
JSON representation

[IEEE TIP] "EnlightenGAN: Deep Light Enhancement without Paired Supervision" by Yifan Jiang, Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, Zhangyang Wang

Awesome Lists containing this project

README

        

# EnlightenGAN: Deep Light Enhancement without Paired Supervision
[Yifan Jiang](https://yifanjiang19.github.io/), Xinyu Gong, Ding Liu, Yu Cheng, Chen Fang, Xiaohui Shen, Jianchao Yang, Pan Zhou, Zhangyang Wang

[[Paper]](https://arxiv.org/abs/1906.06972) [[Supplementary Materials]](https://yifanjiang.net/files/EnlightenGAN_Supplementary.pdf)

### Representitive Results
![representive_results](/assets/show_3.png)

### Overal Architecture
![architecture](/assets/arch.png)

## Environment Preparing
```
python3.5
```
You should prepare at least 3 1080ti gpus or change the batch size.

```pip install -r requirement.txt```
```mkdir model```
Download VGG pretrained model from [[Google Drive 1]](https://drive.google.com/file/d/1IfCeihmPqGWJ0KHmH-mTMi_pn3z3Zo-P/view?usp=sharing), and then put it into the directory `model`.

### Training process
Before starting training process, you should launch the `visdom.server` for visualizing.

```nohup python -m visdom.server -port=8097```

then run the following command

```python scripts/script.py --train```

### Testing process

Download [pretrained model](https://drive.google.com/file/d/1AkV-n2MdyfuZTFvcon8Z4leyVb0i7x63/view?usp=sharing) and put it into `./checkpoints/enlightening`

Create directories `../test_dataset/testA` and `../test_dataset/testB`. Put your test images on `../test_dataset/testA` (And you should keep whatever one image in `../test_dataset/testB` to make sure program can start.)

Run

```python scripts/script.py --predict ```

### Dataset preparing

Training data [[Google Drive]](https://drive.google.com/drive/folders/1KivxOm79VidSJnJrMV9osr751UD68pCu?usp=sharing) (unpaired images collected from multiple datasets)

Testing data [[Google Drive]](https://drive.google.com/drive/folders/1PrvL8jShZ7zj2IC3fVdDxBY1oJR72iDf?usp=sharing) (including LIME, MEF, NPE, VV, DICP)

And [[BaiduYun]](https://github.com/TAMU-VITA/EnlightenGAN/issues/28) is available now thanks to @YHLelaine!

### Faster Inference
https://github.com/arsenyinfo/EnlightenGAN-inference from @arsenyinfo

If you find this work useful for you, please cite
```
@article{jiang2021enlightengan,
title={Enlightengan: Deep light enhancement without paired supervision},
author={Jiang, Yifan and Gong, Xinyu and Liu, Ding and Cheng, Yu and Fang, Chen and Shen, Xiaohui and Yang, Jianchao and Zhou, Pan and Wang, Zhangyang},
journal={IEEE Transactions on Image Processing},
volume={30},
pages={2340--2349},
year={2021},
publisher={IEEE}
}
```