Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vita-group/lth-pass

[TMLR] "Can You Win Everything with Lottery Ticket?" by Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang
https://github.com/vita-group/lth-pass

adversarial-robustness explanability flatness generalization interpretability loss-landscape lottery-ticket-hypothesis out-of-distribution-detection pac-bayes robustness uncertainty winning-tickets

Last synced: about 1 month ago
JSON representation

[TMLR] "Can You Win Everything with Lottery Ticket?" by Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang

Awesome Lists containing this project

README

        

# Can You Win Everything with Lottery Ticket?

[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)

Code for this **preprint** paper [Can You Win Everything with Lottery Ticket?]()

Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang

## Overview

## Experiment Results

![](./Figs/Res.png)

## Prerequisites

- pytorch

- torchvision

- advertorch

## Usages

Evaluation on CIFAR-10/100

```
python -u main_eval.py \
--data [data-direction] \
--dataset cifar10 \ # choose from [cifar10, cifar100]
--arch resnet20s \ # choose from [resnet20s,resnet18,wideresnet]
--pretrained [pretrained-weight] \
--eval_mode accuracy,robustness,corruption,ood,calibration,interpretation,pac_bayes_weight,pac_bayes_input \
--output_file result.pt \
--test_randinit_off \
--image_number 1000
```

Evaluation on ImageNet

```
python -u main_eval_imagenet.py \
--data [data-direction] \
--arch resnet50 \
--pretrained [pretrained-weight] \
--eval_mode accuracy,robustness,corruption,ood,calibration,interpretation,pac_bayes_weight,pac_bayes_input \
--output_file result.pt
```

Evaluation for Hessian

```
python -u vis_pyhessian_analysis.py \
--data [data-direction] \
--dataset [dataset] \ choose from [cifar10, cifar100, imagenet]
--arch [network-architecture] \ choose from [resnet20s,resnet18,wideresnet,resnet50]
--pretrained [pretrained-weight] \
--output_file result.pt \
--mode weight,input
```

Composition neurons

`cd composition-neuron`, which is modified from https://github.com/jayelm/compexp

## Citation

```
TBD
```