Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vita-group/lth-pass
[TMLR] "Can You Win Everything with Lottery Ticket?" by Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang
https://github.com/vita-group/lth-pass
adversarial-robustness explanability flatness generalization interpretability loss-landscape lottery-ticket-hypothesis out-of-distribution-detection pac-bayes robustness uncertainty winning-tickets
Last synced: about 1 month ago
JSON representation
[TMLR] "Can You Win Everything with Lottery Ticket?" by Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang
- Host: GitHub
- URL: https://github.com/vita-group/lth-pass
- Owner: VITA-Group
- License: mit
- Created: 2021-12-06T06:36:41.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-09-08T00:37:07.000Z (over 2 years ago)
- Last Synced: 2024-04-16T07:18:14.572Z (8 months ago)
- Topics: adversarial-robustness, explanability, flatness, generalization, interpretability, loss-landscape, lottery-ticket-hypothesis, out-of-distribution-detection, pac-bayes, robustness, uncertainty, winning-tickets
- Language: Python
- Homepage:
- Size: 8.54 MB
- Stars: 10
- Watchers: 7
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Can You Win Everything with Lottery Ticket?
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
Code for this **preprint** paper [Can You Win Everything with Lottery Ticket?]()
Tianlong Chen, Zhenyu Zhang, Jun Wu, Randy Huang, Sijia Liu, Shiyu Chang, Zhangyang Wang
## Overview
## Experiment Results
![](./Figs/Res.png)
## Prerequisites
- pytorch
- torchvision
- advertorch
## Usages
Evaluation on CIFAR-10/100
```
python -u main_eval.py \
--data [data-direction] \
--dataset cifar10 \ # choose from [cifar10, cifar100]
--arch resnet20s \ # choose from [resnet20s,resnet18,wideresnet]
--pretrained [pretrained-weight] \
--eval_mode accuracy,robustness,corruption,ood,calibration,interpretation,pac_bayes_weight,pac_bayes_input \
--output_file result.pt \
--test_randinit_off \
--image_number 1000
```Evaluation on ImageNet
```
python -u main_eval_imagenet.py \
--data [data-direction] \
--arch resnet50 \
--pretrained [pretrained-weight] \
--eval_mode accuracy,robustness,corruption,ood,calibration,interpretation,pac_bayes_weight,pac_bayes_input \
--output_file result.pt
```Evaluation for Hessian
```
python -u vis_pyhessian_analysis.py \
--data [data-direction] \
--dataset [dataset] \ choose from [cifar10, cifar100, imagenet]
--arch [network-architecture] \ choose from [resnet20s,resnet18,wideresnet,resnet50]
--pretrained [pretrained-weight] \
--output_file result.pt \
--mode weight,input
```Composition neurons
`cd composition-neuron`, which is modified from https://github.com/jayelm/compexp
## Citation
```
TBD
```