Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vladimirrotariu/vladimirrotariu
https://github.com/vladimirrotariu/vladimirrotariu
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/vladimirrotariu/vladimirrotariu
- Owner: vladimirrotariu
- Created: 2023-09-04T19:25:23.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-10-24T08:29:14.000Z (3 months ago)
- Last Synced: 2024-10-25T05:05:17.746Z (3 months ago)
- Size: 41 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Hola! š
## About Me
Iām **Vladimir** ā a passionate **Mathematician** and **Physicist**, now working as an **AI & Backend Engineer** focused on **IoT** and **Digital Twins** for **Smart Cities**.My LinkedIn is [Vladimir Rotariu](https://www.linkedin.com/in/vladimir-rotariu-87081622b/).
### What I Do
In my current role, I:- Preprocess IoT data with:
- **pandas**/**polars**
- **numpy**
- Design and develop **AI models** for IoT data utilizing:
- **PyTorch**
- **scikit-learn**
- **statsmodels**
- **optuna**
- Integrate these models into a **FastAPI** REST API*Interested in the AI project that I currently work on? Check out [Proyecto GeDIA](https://servicio.grupocibernos.com/proyecto-gedia).*
## Publications
* [Bohmian insights into mathematical scattering theory](https://scholar.google.nl/citations?view_op=view_citation&hl=nl&user=PZCJoksAAAAJ&sortby=pubdate&citation_for_view=PZCJoksAAAAJ:aqlVkmm33-oC) -
*A novel experimentally-verifiable exploration of an interpretation of **quantum physics** that recovers the position of a particle, albeit in a **statistical** manner.*## Focus Personal Projects
* A **FastAPI** microservice the [BLIP-large model](https://github.com/sponteen/high_quality_image_captioner) from **Hugging Face** that is in charge of captioning user-uploaded images.
* A [Python package](https://github.com/vladimirrotariu/parallel-monte-carlo-simulations) that leverages Apache Beam in order to efficiently orchestrate in-parallel Monte Carlo simulations.## Tech Stack (click on names to see relevant projects)
* **Programming Languages**: [Python](https://github.com/vladimirrotariu/parallel-monte-carlo-simulations/blob/main/parallel_simulations/parallel_simulations.py), [Java](https://github.com/vladimirrotariu/spark-utility-classes/tree/main), C++, Rust, various dialects of SQL.
* **GCP Data Engineering Products Suite**: Cloud Dataflow, Google BigQuery, Cloud Composer, Cloud Dataproc...
* **Main Frameworks**: FastAPI, PyTorch, scikit-learn, statsmodels, [Apache Beam](https://github.com/vladimirrotariu/parallel-monte-carlo-simulations).
* **Databases**: PostgreSQL, Redis, [SurrealDB](https://github.com/vladimirrotariu/surrealml-vs-onnx-vs-pytorch/tree/main), CrateDB, InfluxDB, MongoDB.
* **Tools**: [Jupyter Notebooks](https://github.com/vladimirrotariu/parallel-monte-carlo-simulations/blob/main/demos/demo_coin_sequences.ipynb), Docker, Kubernetes, numpy, pandas, Eclipse Paho MQTT.
* **General knowledge**: in web development acquired through personal projects and competitive bootcamps (React.js, Node.js, TypeScript, HTML, CSS, Solidity...)