Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vmenger/deduce

Deduce: de-identification method for Dutch medical text
https://github.com/vmenger/deduce

deidentification dutch dutch-clinical-nlp information-extraction nlp python python-library text-mining text-processing

Last synced: 3 months ago
JSON representation

Deduce: de-identification method for Dutch medical text

Awesome Lists containing this project

README

        

[![tests](https://github.com/vmenger/deduce/actions/workflows/test.yml/badge.svg)](https://github.com/vmenger/deduce/actions/workflows/test.yml)
[![build](https://github.com/vmenger/deduce/actions/workflows/build.yml/badge.svg)](https://github.com/vmenger/deduce/actions/workflows/build.yml)
[![documentation](https://readthedocs.org/projects/deduce/badge/?version=latest)](https://deduce.readthedocs.io/en/latest/?badge=latest)
![pypi version](https://img.shields.io/pypi/v/deduce)
![pypi python versions](https://img.shields.io/pypi/pyversions/deduce)
![pypi downloads](https://img.shields.io/pypi/dm/deduce)
![license](https://img.shields.io/github/license/vmenger/deduce)
[![black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

# deduce

> Deduce 3.0.0 is out! It is way more accurate, and faster too. It's fully backward compatible, but some functionality is scheduled for removal, read more about it here: [docs/migrating-to-v3](https://deduce.readthedocs.io/en/latest/migrating.html)

* :sparkles: Remove sensitive information from clinical text written in Dutch
* :mag: Rule based logic for detecting e.g. names, locations, institutions, identifiers, phone numbers
* :triangular_ruler: Useful out of the box, but customization higly recommended
* :seedling: Originally validated in [Menger et al. (2017)](http://www.sciencedirect.com/science/article/pii/S0736585316307365), but further optimized since

> :exclamation: Deduce is useful out of the box, but please validate and customize on your own data before using it in a critical environment. Remember that de-identification is almost never perfect, and that clinical text often contains other specific details that can link it to a specific person. Be aware that de-identification should primarily be viewed as a way to mitigate risk of identification, rather than a way to obtain anonymous data.

Currently, `deduce` can remove the following types of Protected Health Information (PHI):

* :bust_in_silhouette: person names, including prefixes and initials
* :earth_americas: geographical locations smaller than a country
* :hospital: names of hospitals and healthcare institutions
* :calendar: dates (combinations of day, month and year)
* :birthday: ages
* :1234: BSN numbers
* :1234: identifiers (7+ digits without a specific format, e.g. patient identifiers, AGB, BIG)
* :phone: phone numbers
* :e-mail: e-mail addresses
* :link: URLs

## Citing

If you use `deduce`, please cite the following paper:

[Menger, V.J., Scheepers, F., van Wijk, L.M., Spruit, M. (2017). DEDUCE: A pattern matching method for automatic de-identification of Dutch medical text, Telematics and Informatics, 2017, ISSN 0736-5853](http://www.sciencedirect.com/science/article/pii/S0736585316307365)

## Installation

``` python
pip install deduce
```

## Getting started

The basic way to use `deduce`, is to pass text to the `deidentify` method of a `Deduce` object:

```python
from deduce import Deduce

deduce = Deduce()

text = (
"betreft: Jan Jansen, bsn 111222333, patnr 000334433. De patient J. Jansen is 64 jaar oud en woonachtig in "
"Utrecht. Hij werd op 10 oktober 2018 door arts Peter de Visser ontslagen van de kliniek van het UMCU. "
"Voor nazorg kan hij worden bereikt via [email protected] of (06)12345678."
)

doc = deduce.deidentify(text)
```

The output is available in the `Document` object:

```python
from pprint import pprint

pprint(doc.annotations)

AnnotationSet({
Annotation(text="(06)12345678", start_char=272, end_char=284, tag="telefoonnummer"),
Annotation(text="111222333", start_char=25, end_char=34, tag="bsn"),
Annotation(text="Peter de Visser", start_char=153, end_char=168, tag="persoon"),
Annotation(text="[email protected]", start_char=247, end_char=268, tag="email"),
Annotation(text="patient J. Jansen", start_char=56, end_char=73, tag="patient"),
Annotation(text="Jan Jansen", start_char=9, end_char=19, tag="patient"),
Annotation(text="10 oktober 2018", start_char=127, end_char=142, tag="datum"),
Annotation(text="64", start_char=77, end_char=79, tag="leeftijd"),
Annotation(text="000334433", start_char=42, end_char=51, tag="id"),
Annotation(text="Utrecht", start_char=106, end_char=113, tag="locatie"),
Annotation(text="UMCU", start_char=202, end_char=206, tag="instelling"),
})

print(doc.deidentified_text)

"""betreft: [PERSOON-1], bsn [BSN-1], patnr [ID-1]. De [PERSOON-1] is [LEEFTIJD-1] jaar oud en woonachtig in
[LOCATIE-1]. Hij werd op [DATUM-1] door arts [PERSOON-2] ontslagen van de kliniek van het [INSTELLING-1].
Voor nazorg kan hij worden bereikt via [EMAIL-1] of [TELEFOONNUMMER-1]."""
```

Additionally, if the names of the patient are known, they may be added as `metadata`, where they will be picked up by `deduce`:

```python
from deduce.person import Person

patient = Person(first_names=["Jan"], initials="JJ", surname="Jansen")
doc = deduce.deidentify(text, metadata={'patient': patient})

print (doc.deidentified_text)

"""betreft: [PATIENT], bsn [BSN-1], patnr [ID-1]. De [PATIENT] is [LEEFTIJD-1] jaar oud en woonachtig in
[LOCATIE-1]. Hij werd op [DATUM-1] door arts [PERSOON-2] ontslagen van de kliniek van het [INSTELLING-1].
Voor nazorg kan hij worden bereikt via [EMAIL-1] of [TELEFOONNUMMER-1]."""
```

As you can see, adding known names keeps references to `[PATIENT]` in text. It also increases recall, as not all known names are contained in the lookup lists.

## Versions

For most cases the latest version is suitable, but some specific milestones are:

* `3.0.0` - Many optimizations in accuracy, smaller refactors, further speedups
* `2.0.0` - Major refactor, with speedups, many new options for customizing, functionally very similar to original
* `1.0.8` - Small bugfixes compared to original release
* `1.0.1` - Original release with [Menger et al. (2017)](http://www.sciencedirect.com/science/article/pii/S0736585316307365)

Detailed versioning information is accessible in the [changelog](CHANGELOG.md).

## Documentation

All documentation, including a more extensive tutorial on using, configuring and modifying `deduce`, and its API, is available at: [docs/tutorial](https://deduce.readthedocs.io/en/latest/)

## Contributing

For setting up the dev environment and contributing guidelines, see: [docs/contributing](https://deduce.readthedocs.io/en/latest/contributing.html)

## Authors

* **Vincent Menger** - *Initial work*
* **Jonathan de Bruin** - *Code review*
* **Pablo Mosteiro** - *Bug fixes, structured annotations*

## License

This project is licensed under the GNU General Public License v3.0 - see the [LICENSE.md](LICENSE.md) file for details