Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vndee/deepgen
Collection of modern Deep Generative Models
https://github.com/vndee/deepgen
deep-learning generative-adversarial-network generative-model variational-autoencoder
Last synced: 3 months ago
JSON representation
Collection of modern Deep Generative Models
- Host: GitHub
- URL: https://github.com/vndee/deepgen
- Owner: vndee
- License: gpl-3.0
- Created: 2019-08-02T09:15:50.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-12-08T05:57:58.000Z (about 2 years ago)
- Last Synced: 2024-11-08T17:51:47.092Z (3 months ago)
- Topics: deep-learning, generative-adversarial-network, generative-model, variational-autoencoder
- Language: Python
- Homepage:
- Size: 12 MB
- Stars: 5
- Watchers: 3
- Forks: 0
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
## DeepGen
A collection of modern Deep Generative Models.### Install
`pip3 install deepgen`
### Usage
Toy example:
```python
import os
import torchfrom deepgen.gan.gan import GAN
from torchvision import datasets
import torchvision.transforms as transformsimg_size = (1, 28, 28)
batch_size = 64if __name__ == '__main__':
data_loader = torch.utils.data.DataLoader(
datasets.MNIST(
'../data/',
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(28), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=batch_size,
shuffle=True,
)os.makedirs('images', exist_ok=True)
model = GAN()
print(model)
his = model.train(data_loader=data_loader, n_epoch=5, sample_interval=10)
print(his)```
### TODO:
Updating
#### Generative Adversarial Network (GANs)
- [x] Vanilla GAN
- [x] Boundary Seeking GAN
- [ ] Auxiliary Classifier GAN
- [ ] BEGAN
- [ ] BicycleGAN
- [ ] Boundary-Seeking GAN
- [x] Conditional GAN
- [ ] Context-Conditional GAN
- [ ] Context Encoder
- [ ] Coupled GAN
- [ ] CycleGAN
- [x] Deep Convolutional GAN
- [ ] DiscoGAN
- [ ] DRAGAN
- [ ] DualGAN
- [ ] Energy-Based GAN
- [ ] Enhanced Super-Resolution GAN
- [ ] GAN
- [ ] InfoGAN
- [ ] Least Squares GAN
- [ ] MUNIT
- [ ] Pix2Pix
- [ ] PixelDA
- [ ] Relativistic GAN
- [ ] Semi-Supervised GAN
- [ ] Softmax GAN
- [ ] StarGAN
- [ ] Super-Resolution GAN
- [ ] UNIT
- [ ] Wasserstein GAN
- [ ] Wasserstein GAN GP
- [ ] Wasserstein GAN DIV#### Variational Autoencoder (VAEs)
- [ ] Vanilla VAE
- [ ] Conditional VAE
- [ ] Denoising VAE
- [ ] Adversarial Variational Bayes
- [ ] Adversarial Autoencoder