An open API service indexing awesome lists of open source software.

https://github.com/voxel51/papers-with-data

A curated list of papers that released datasets along with their work
https://github.com/voxel51/papers-with-data

ai artificial-intelligence computer-vision data-science datasets deep-learning machine-learning papers

Last synced: 3 months ago
JSON representation

A curated list of papers that released datasets along with their work

Awesome Lists containing this project

README

          

# Papers with Data

Data reigns supreme 🥇

Every day it becomes more evident that *data* is the limiting factor for
state-of-the-art 📈 machine learning. Your model architecture may be
revolutionary, but without high-quality data 📊 to train on, it will be doomed
to mediocrity.

Pair idea with execution and use top-notch data in your next project!

## NeurIPS 2023

We've combed through the **2384** papers accepted to NeurIPS in 2023 and compiled
a short-list of papers introducing exciting new datasets.

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| DreamSim: Learning New Dimensions of Human Visual Similarity using Synthetic Data | `perceptual similarity`, `image`, `synthetic`, `diffusion`, `JND`, `2AFC` | [![arXiv](https://img.shields.io/badge/arXiv-2306.09344-b31b1b.svg)](https://arxiv.org/abs/2306.09344)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/NIGHTS/samples) | [![GitHub](https://img.shields.io/github/stars/ssundaram21/dreamsim?style=social)](https://github.com/ssundaram21/dreamsim) |
| Visual Instruction Tuning | `vision-language`, `llm`, `instruction-tuning`, `image`, `multimodal` | [![arXiv](https://img.shields.io/badge/arXiv-2304.08485-b31b1b.svg)](https://arxiv.org/abs/2304.08485)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/LLaVA-Instruct/samples) | [![GitHub](https://img.shields.io/github/stars/haotian-liu/LLaVA?style=social)](https://github.com/haotian-liu/LLaVA) |
| ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation | `reward-model`, `image`, `text-to-image`, `synthetic`, `human-preference`, `alignment` | [![arXiv](https://img.shields.io/badge/arXiv-2304.05977-b31b1b.svg)](https://arxiv.org/abs/2304.05977)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/ImageRewardDB-clean/samples) | [![GitHub](https://img.shields.io/github/stars/THUDM/ImageReward?style=social)](https://github.com/THUDM/ImageReward) |
| MagicBrush: A Manually Annotated Dataset for Instruction-Guided Image Editing | `image-editing`, `synthetic`, `image`, `instruction` | [![arXiv](https://img.shields.io/badge/arXiv-2306.10012-b31b1b.svg)](https://arxiv.org/abs/2306.10012)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/MagicBrish/samples) | [![GitHub](https://img.shields.io/github/stars/OSU-NLP-Group/MagicBrush?style=social)](https://github.com/OSU-NLP-Group/MagicBrush) |
| REAL3D-AD | `3D`, `point-cloud`, `anomaly-detection` | [![arXiv](https://img.shields.io/badge/arXiv-2309.13226-b31b1b.svg)](https://arxiv.org/abs/2309.13226)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/REAL3D-AD/samples) | [![GitHub](https://img.shields.io/github/stars/M-3LAB/Real3D-AD?style=social)](https://github.com/M-3LAB/Real3D-AD) |

## WACV 2024

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| dacl10k: Benchmark for Semantic Bridge Damage Segmentation | `image`, `semantic segmentation`, `classification`, `construction`, `defect` | [![arXiv](https://img.shields.io/badge/arXiv-2309.00460-b31b1b.svg)](https://arxiv.org/abs/2309.00460)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/dacl10k/samples) | [![GitHub](https://img.shields.io/github/stars/phiyodr/dacl10k-toolkit?style=social)](https://github.com/phiyodr/dacl10k-toolkit) |

## ICCV 2023

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| Satlas: A Large-Scale, Multi-Task Dataset for Remote Sensing Image Understanding | `image`, `SAR`, `satellite`, `detection`, `climate` | [![arXiv](https://img.shields.io/badge/arXiv-2211.15660-b31b1b.svg)](https://arxiv.org/abs/2211.15660)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/SATLAS%20Marine%20Infrastructure/samples) | [![GitHub](https://img.shields.io/github/stars/allenai/satlas?style=social)](https://github.com/allenai/satlas) |
| Building3D: An Urban-Scale Dataset and Benchmarks for Learning Roof Structures from Point Clouds | `3D`, `point cloud` | [![arXiv](https://img.shields.io/badge/arXiv-2307.11914-b31b1b.svg)](https://arxiv.org/abs/2307.11914)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/Building3D/samples) | |
| EgoObjects: A Large-Scale Egocentric Dataset for Fine-Grained Object Understanding | `image`, `object`, `ego` | [![arXiv](https://img.shields.io/badge/arXiv-2309.08816-b31b1b.svg)](https://arxiv.org/abs/2309.08816)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/egoobjects-val/samples) | [![GitHub](https://img.shields.io/github/stars/facebookresearch/EgoObjects?style=social)](https://github.com/facebookresearch/EgoObjects) |
| Equivariant Similarity for Vision-Language Foundation Models | `image`, `similarity`, `caption` | [![arXiv](https://img.shields.io/badge/arXiv-2303.14465-b31b1b.svg)](https://arxiv.org/abs/2303.14465)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/eqben-test/samples) | [![GitHub](https://img.shields.io/github/stars/Wangt-CN/EqBen?style=social)](https://github.com/Wangt-CN/EqBen) |
| MOSE: A New Dataset for Video Object Segmentation in Complex Scenes | `video`, `segmentation`, `tracking` | [![arXiv](https://img.shields.io/badge/arXiv-2302.01872-b31b1b.svg)](https://arxiv.org/abs/2302.01872)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/mose/samples) | |
| SportsMOT: A Large Multi-Object Tracking Dataset in Multiple Sports Scenes | `multi-object tracking`, `sports` | [![arXiv](https://img.shields.io/badge/arXiv-2304.05170-b31b1b.svg)](https://arxiv.org/abs/2304.05170)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/sportsmot-validation/samples) | [![GitHub](https://img.shields.io/github/stars/MCG-NJU/SportsMOT?style=social)](https://github.com/MCG-NJU/SportsMOT) |

## CVPR 2023

![cvpr2023-4](https://github.com/voxel51/papers-with-data/assets/12500356/408fb4c6-3961-4909-a1a0-a756a8e8e6e8)

We've combed through the **2359** papers accepted to CVPR in 2023 and compiled
a short-list of papers introducing exciting new datasets.

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| MVImgNet: A Large-scale Dataset of Multi-view Images | `multi-view`, `image` | [![arXiv](https://img.shields.io/badge/arXiv-2303.06042-b31b1b.svg)](https://arxiv.org/abs/2303.06042)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/MVImgNet/samples) | [![GitHub](https://img.shields.io/github/stars/GAP-LAB-CUHK-SZ/MVImgNet?style=social)](https://github.com/GAP-LAB-CUHK-SZ/MVImgNet) |
| GeoNet: Benchmarking Unsupervised Adaptation across Geographies | `geolocation`, `image` | [![arXiv](https://img.shields.io/badge/arXiv-2303.15443-b31b1b.svg)](https://arxiv.org/abs/2303.15443)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/GeoNet/samples) | |
| Joint HDR Denoising and Fusion: A Real-World Mobile HDR Image Dataset | `denoising`, `image` | | [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/Mobile-HDR/samples) | [![GitHub](https://img.shields.io/github/stars/shuaizhengliu/joint-hdrdn?style=social)](https://github.com/shuaizhengliu/joint-hdrdn) |
| Spring: A High-Resolution High-Detail Dataset and Benchmark for Scene Flow, Optical Flow and Stereo | `optical flow`, `stereo`, `image` | [![arXiv](https://img.shields.io/badge/arXiv-2303.01943-b31b1b.svg)](https://arxiv.org/abs/2303.01943)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/Spring/samples) | |
| ImageNet-E: Benchmarking Neural Network Robustness via Attribute Editing | `image`, `editing` | [![arXiv](https://img.shields.io/badge/arXiv-2303.17096-b31b1b.svg)](https://arxiv.org/abs/2303.17096)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/ImageNet-E/samples) | [![GitHub](https://img.shields.io/github/stars/alibaba/easyrobust?style=social)](https://github.com/alibaba/easyrobust) |
| ARKitTrack: A New Diverse Dataset for Tracking Using Mobile RGB-D Data | `RGB-D`, `segmentation`, `video` | [![arXiv](https://img.shields.io/badge/arXiv-2303.13885-b31b1b.svg)](https://arxiv.org/abs/2303.13885)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/ARKitTrack/samples) | [![GitHub](https://img.shields.io/github/stars/lawrence-cj/ARKitTrack?style=social)](https://github.com/lawrence-cj/ARKitTrack) |
| Diverse Embedding Expansion Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-identification | `low-light`, `cross-modal`, `IR` | [![arXiv](https://img.shields.io/badge/arXiv-2303.14481-b31b1b.svg)](https://arxiv.org/abs/2303.14481)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/LLCM/samples) | [![GitHub](https://img.shields.io/github/stars/ZYK100/LLCM?style=social)](https://github.com/ZYK100/LLCM) |
| JRDB-Pose: A Large-scale Dataset for Multi-Person Pose Estimation and Tracking | `pose estimation`, `image`, `keypoint`, `tracking` | [![arXiv](https://img.shields.io/badge/arXiv-2210.11940v2-b31b1b.svg)](https://arxiv.org/abs/2210.11940v2)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/JRDB-Pose/samples) | |
| A New Benchmark: On the Utility of Synthetic Data with Blender for Bare Supervised Learning and Downstream Domain Adaptation | `synthetic`, `domain adaptation`, `supervised` | [![arXiv](https://img.shields.io/badge/arXiv-2303.09165-b31b1b.svg)](https://arxiv.org/abs/2303.09165)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/SynSL-120K/samples) | [![GitHub](https://img.shields.io/github/stars/huitangtang/On_the_Utility_of_Synthetic_Data?style=social)](https://github.com/huitangtang/On_the_Utility_of_Synthetic_Data) |

## Papers from 2022

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| Calving fronts and where to find them: a benchmark dataset and methodology for automatic glacier calving front extraction from synthetic aperture radar imagery | `glacier`, `climate`, `SAR`, `satellite`, `image`, `semantic segmentation` | [![Paper Badge](https://img.shields.io/badge/Paper-Paper.svg)](https://essd.copernicus.org/articles/14/4287/2022/)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/CaFFe/samples) | [![Code Badge](https://img.shields.io/badge/Code-Code.svg)](https://doi.pangaea.de/10.1594/PANGAEA.940950) |
| The Caltech Fish Counting Dataset: A Benchmark for Multiple-Object Tracking and Counting | `conservation`, `detection`, `SONAR`, `video`, `tracking`, `counting` | [![arXiv](https://img.shields.io/badge/arXiv-2207.09295-b31b1b.svg)](https://arxiv.org/abs/2207.09295)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/CFC/samples) | [![GitHub](https://img.shields.io/github/stars/visipedia/caltech-fish-counting?style=social)](https://github.com/visipedia/caltech-fish-counting) |

## Classics

| **Title** | **Tags** | **Paper** | **Dataset** | **Code** |
|:---------:|:---------:|:---------:|:-----------:|:--------:|
| ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases | `x-ray`, `image`, `healthcare`, `detection` | [![arXiv](https://img.shields.io/badge/arXiv-1705.02315v5-b31b1b.svg)](https://arxiv.org/abs/1705.02315v5)| [![FiftyOne](https://img.shields.io/badge/FiftyOne-blue.svg?logo=)](https://try.fiftyone.ai/datasets/ChestX-ray14/samples) | |

## Contributing 👋

We would love your help in making this repository even better! If we missed a
paper that introduced a new dataset, or if you can think of any ways to improve
the repository, feel free to open an issue or a pull request.

## Note

This repository is inspired by [paperswithcode](https://paperswithcode.com),
and the template was adapted from
[top-cvpr-2023-papers](https://github.com/SkalskiP/top-cvpr-2023-papers).