Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vra/flopth

A simple program to calculate and visualize the FLOPs and Parameters of Pytorch models, with handy CLI and easy-to-use Python API.
https://github.com/vra/flopth

cnn deep-learning deeplearning flop flops pip pypi python python3 pytorch visualization

Last synced: 6 days ago
JSON representation

A simple program to calculate and visualize the FLOPs and Parameters of Pytorch models, with handy CLI and easy-to-use Python API.

Awesome Lists containing this project

README

        

______ __ __
/ __/ /___ ____ / /_/ /_
/ /_/ / __ \/ __ \/ __/ __ \
/ __/ / /_/ / /_/ / /_/ / / /
/_/ /_/\____/ .___/\__/_/ /_/
/_/

# flopth

A simple program to calculate and visualize the FLOPs and Parameters of Pytorch models, with cli tool and Python API.

# Features
- Handy cli command to show flops and params quickly
- Visualization percent of flops and params in each layer
- Support multiple inputs in model's `forward` function
- Support Both CPU and GPU mode
- Support Torchscript Model (Only Parameters are shown)
- Support Python3.5 and above

# Installation
Install stable version of flopth via pypi:
```bash
pip install flopth
```

or install latest version via github:
```bash
pip install -U git+https://github.com/vra/flopth.git
```

# Usage examples
## cli command
flopth provide cli command `flopth` after installation. You can use it to get information of pytorch models quickly
### Running on models in torchvision.models
with `flopth -m `, flopth gives you all information about the ``, input shape, output shape, parameter and flops of each layer, and total flops and params.

Here is an example running on alexnet (default input size in (3, 224, 224)):
```plain
$ flopth -m alexnet
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===================+=============+=============+==========+==================+================================+==========+=================+=====================+
| features.0 | Conv2d | (3,224,224) | (64,55,55) | 23.296K | 0.0381271% | | 70.4704M | 9.84839% | #### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.1 | ReLU | (64,55,55) | (64,55,55) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.2 | MaxPool2d | (64,55,55) | (64,27,27) | 0.0 | 0.0% | | 193.6K | 0.027056% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.3 | Conv2d | (64,27,27) | (192,27,27) | 307.392K | 0.50309% | | 224.089M | 31.3169% | ############### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.4 | ReLU | (192,27,27) | (192,27,27) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.5 | MaxPool2d | (192,27,27) | (192,13,13) | 0.0 | 0.0% | | 139.968K | 0.0195608% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.6 | Conv2d | (192,13,13) | (384,13,13) | 663.936K | 1.08662% | | 112.205M | 15.6809% | ####### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.7 | ReLU | (384,13,13) | (384,13,13) | 0.0 | 0.0% | | 64.896K | 0.00906935% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.8 | Conv2d | (384,13,13) | (256,13,13) | 884.992K | 1.44841% | | 149.564M | 20.9018% | ########## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.9 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.10 | Conv2d | (256,13,13) | (256,13,13) | 590.08K | 0.965748% | | 99.7235M | 13.9366% | ###### |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.11 | ReLU | (256,13,13) | (256,13,13) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| features.12 | MaxPool2d | (256,13,13) | (256,6,6) | 0.0 | 0.0% | | 43.264K | 0.00604624% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| avgpool | AdaptiveAvgPool2d | (256,6,6) | (256,6,6) | 0.0 | 0.0% | | 9.216K | 0.00128796% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.0 | Dropout | (9216) | (9216) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.1 | Linear | (9216) | (4096) | 37.7528M | 61.7877% | ############################## | 37.7487M | 5.27547% | ## |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.2 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.3 | Dropout | (4096) | (4096) | 0.0 | 0.0% | | 0.0 | 0.0% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.4 | Linear | (4096) | (4096) | 16.7813M | 27.4649% | ############# | 16.7772M | 2.34465% | # |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.5 | ReLU | (4096) | (4096) | 0.0 | 0.0% | | 4.096K | 0.000572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+
| classifier.6 | Linear | (4096) | (1000) | 4.097M | 6.70531% | ### | 4.096M | 0.572425% | |
+---------------+-------------------+-------------+-------------+----------+------------------+--------------------------------+----------+-----------------+---------------------+

FLOPs: 715.553M
Params: 61.1008M
```

### Running on custom models
Also, given model name and the file path where the model defined, flopth will output model information:

For the dummpy network `MyModel` defined in `/tmp/my_model.py`,
```python
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn

class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)

def forward(self, x1):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x1 = self.conv4(x1)
return x1
```
You can use `flopth -m MyModel -p /tmp/my_model -i 3 224 224` to print model information:

```plain
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+

FLOPs: 16.8591M
Params: 336.0
```

#### Multiple inputs
If your model has more than one input in `forward`, you can add multiple `-i` parameters to flopth:

```python
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn

class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)

def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)
```
You can use `flopth -m MyModel -p /tmp/my_model -i 3 224 224 -i 3 128 128` to print model information:

```plain
flopth -m MyModel -p /tmp/my_model.py -i 3 224 224 -i 3 128 128
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+

FLOPs: 11.1821M
Params: 336.0
```

#### Extra arguments in model's initialization
flopth with options like `-x param1=int:3 param2=float:5.2` to process the extra parameters in model's initialization:
```python
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn

class MyModel(nn.Module):
# Please Notice the parameters ks1 and ks2 here!
def __init__(self, ks1, ks2):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=ks1, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=ks1, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=ks2, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=ks2, padding=1)

def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)
```
In order to pass value to the arguments of `ks1` and `ks2`, we can run flopth like this:
```plain
$ flopth -m MyModel -p /tmp/my_model.py -i 3 224 224 -i 3 128 128 -x ks1=int:3 ks2=int:1
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+=======================+==========+=================+=========================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 43.75% | ##################### | 4.21478M | 47.6707% | ####################### |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 43.75% | ##################### | 4.21478M | 47.6707% | ####################### |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv3 | Conv2d | (3,128,128) | (3,130,130) | 12 | 6.25% | ### | 202.8K | 2.29374% | # |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+
| conv4 | Conv2d | (3,130,130) | (3,132,132) | 12 | 6.25% | ### | 209.088K | 2.36486% | # |
+---------------+---------------+-------------+-------------+----------+------------------+-----------------------+----------+-----------------+-------------------------+

FLOPs: 8.84146M
Params: 192.0
```

### Line number mode
One of the fancy features of flopth is that given the line number where the model **object** is definited, flopth can print model information:
```python
# file path: /tmp/my_model.py
# model name: MyModel
import torch.nn as nn

class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)

def forward(self, x1, x2):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x2 = self.conv3(x2)
x2 = self.conv4(x2)
return (x1, x2)

if __name__ == '__main__':
my_model = MyModel()
```

Since the model object `my_model` in defined in line 23, we can run flopth like this:
```plain
$ flopth -n 23 -p /tmp/my_model.py -i 3 224 224 -i 3 128 128
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 37.6923% | ################## |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,128,128) | (3,128,128) | 84 | 25.0% | ############ | 1.37626M | 12.3077% | ###### |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+

FLOPs: 11.1821M
Params: 336.0
```

**Notice: Although line number mode of flopth is quite handy, it may fail when the model definition is too complex, e.g., using outer config file to initialize a model. In this case, I recommend you to use flopth's Python API detailed below.**

## Python API
The Python API of flopth is quite simple:
```python
import torch
import torch.nn as nn

# import flopth
from flopth import flopth

# define Model
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(3, 3, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(3, 3, kernel_size=3, padding=1)

def forward(self, x1):
x1 = self.conv1(x1)
x1 = self.conv2(x1)
x1 = self.conv3(x1)
x1 = self.conv4(x1)
return x1

# declare Model object
my_model = MyModel()

# Use input size
flops, params = flopth(my_model, in_size=((3, 224, 224),))
print(flops, params)

# Or use input tensors
dummy_inputs = torch.rand(1, 3, 224, 224)
flops, params = flopth(my_model, inputs=(dummy_inputs,))
print(flops, params)
```

The output is like this:
```plain
16.8591M 336.0
```

To show detail information of each layer, add `show_detail=True` in flopth function call:
```python
flops, params = flopth(my_model, in_size=((3, 224, 224),), show_detail=True)
```

The outputs:
```plain
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| module_name | module_type | in_shape | out_shape | params | params_percent | params_percent_vis | flops | flops_percent | flops_percent_vis |
+===============+===============+=============+=============+==========+==================+======================+==========+=================+=====================+
| conv1 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv2 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv3 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+
| conv4 | Conv2d | (3,224,224) | (3,224,224) | 84 | 25.0% | ############ | 4.21478M | 25.0% | ############ |
+---------------+---------------+-------------+-------------+----------+------------------+----------------------+----------+-----------------+---------------------+

16.8591M 336.0
```

To show only the value of flops and params (no unit conversion), add `bare_number=True` to flopth function call:
```python
flops, params = flopth(my_model, in_size=((3, 224, 224),), bare_number=True)
```

The outputs:
```plain
16859136 336
```

# Known issues
1. When use a module more than one time during `forward`, the FLOPs calculation is not correct, For example:
```python
import torch.nn as nn

class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()

self.l1 = nn.Linear(10, 10)

def forward(self, x, y):
x = self.l1(x)
x = self.l1(x)
x = self.l1(x)

return x
```
Will give wrong FLOPs value, because we use [register_buffer ](https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module.register_buffer), which is bind to a `nn.Module` (in this example, `l1`).

# TODOs
- [x] Support multiple inputs
- [x] Add parameter size
- [x] Add file line mode
- [x] Add line number mode
- [ ] Support more modules

# Contribution and issue
Any discussion and contribution are very welcomed. Please open an issue to reach me.

# Acknowledge
This program is mostly inspired by [torchstat](https://github.com/Swall0w/torchstat), great thanks to the creators of it.