Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vturrisi/solo-learn

solo-learn: a library of self-supervised methods for visual representation learning powered by Pytorch Lightning
https://github.com/vturrisi/solo-learn

barlow-twins byol contrastive-learning deepcluster dino mae masked-input-prediction moco nnclr nvidia-dali pytorch pytorch-lightning ressl self-supervised-learning simclr simsiam swav transformer-models vibcreg vicreg

Last synced: 25 days ago
JSON representation

solo-learn: a library of self-supervised methods for visual representation learning powered by Pytorch Lightning

Awesome Lists containing this project

README

        



[![tests](https://github.com/vturrisi/solo-learn/actions/workflows/tests.yml/badge.svg)](https://github.com/vturrisi/solo-learn/actions/workflows/tests.yml)
[![Documentation Status](https://readthedocs.org/projects/solo-learn/badge/?version=latest)](https://solo-learn.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/vturrisi/solo-learn/branch/main/graph/badge.svg?token=WLU9UU17XZ)](https://codecov.io/gh/vturrisi/solo-learn)

# solo-learn
A library of self-supervised methods for unsupervised visual representation learning powered by PyTorch Lightning.
We aim at providing SOTA self-supervised methods in a comparable environment while, at the same time, implementing training tricks.
The library is self-contained, but it is possible to use the models outside of solo-learn. **More details in our [paper](#citation)**.

---

## News
* **[Jan 14 2024]**: :clap: Bunch of stability improvements during 2023 :) Also added [All4One](https://openaccess.thecvf.com/content/ICCV2023/html/Estepa_All4One_Symbiotic_Neighbour_Contrastive_Learning_via_Self-Attention_and_Redundancy_Reduction_ICCV_2023_paper.html).
* **[Jan 07 2023]**: :diving_mask: Added results, checkpoints and configs for MAE on ImageNet. Thanks to [HuangChiEn](https://github.com/HuangChiEn).
* **[Dec 31 2022]**: :stars: Shiny new logo! Huge thanks to [Luiz](https://www.instagram.com/linhaaspera/)!
* **[Sep 27 2022]**: :pencil: Brand new config system using OmegaConf/Hydra. Adds more clarity and flexibility. New tutorials will follow soon!
* **[Aug 04 2022]**: :paintbrush: Added [MAE](https://arxiv.org/abs/2111.06377) and supports finetuning the backbone with `main_linear.py`, mixup, cutmix and [random augment](https://arxiv.org/abs/1909.13719).
* **[Jul 13 2022]**: :sparkling_heart: Added support for [H5](https://docs.h5py.org/en/stable/index.html) data, improved scripts and data handling.
* **[Jun 26 2022]**: :fire: Added [MoCo V3](https://arxiv.org/abs/2104.02057).
* **[Jun 10 2022]**: :bomb: Improved LARS.
* **[Jun 09 2022]**: :lollipop: Added support for [WideResnet](https://arxiv.org/abs/1605.07146), multicrop for SwAV and equalization data augmentation.
* **[May 02 2022]**: :diamond_shape_with_a_dot_inside: Wrapped Dali with a DataModule, added auto resume for linear eval and Wandb run resume.
* **[Apr 12 2022]**: :rainbow: Improved design of models and added support to train with a fraction of data.
* **[Apr 01 2022]**: :mag: Added the option to use [channel last conversion](https://pytorch.org/tutorials/intermediate/memory_format_tutorial.html#converting-existing-models) which considerably decreases training times.
* **[Feb 04 2022]**: :partying_face: Paper got accepted to JMLR.
* **[Jan 31 2022]**: :eye: Added ConvNeXt support with timm.
* **[Dec 20 2021]**: :thermometer: Added ImageNet results, scripts and checkpoints for MoCo V2+.
* **[Dec 05 2021]**: :notes: Separated [SupCon](https://arxiv.org/abs/2004.11362) from SimCLR and added runs.
* **[Dec 01 2021]**: :fountain: Added [PoolFormer](https://arxiv.org/abs/2111.11418).
* **[Nov 29 2021]**: :bangbang: Breaking changes! Update your versions!!!
* **[Nov 29 2021]**: :book: New tutorials!
* **[Nov 29 2021]**: :houses: Added offline K-NN and offline UMAP.
* **[Nov 29 2021]**: :rotating_light: Updated PyTorch and PyTorch Lightning versions. 10% faster.
* **[Nov 29 2021]**: :beers: Added code of conduct, contribution instructions, issue templates and UMAP tutorial.
* **[Nov 23 2021]**: :space_invader: Added [VIbCReg](https://arxiv.org/abs/2109.00783).
* **[Oct 21 2021]**: :triumph: Added support for object recognition via Detectron v2 and auto resume functionally that automatically tries to resume an experiment that crashed/reached a timeout.
* **[Oct 10 2021]**: :japanese_ogre: Restructured augmentation pipelines to allow more flexibility and multicrop. Also added multicrop for BYOL.
* **[Sep 27 2021]**: :pizza: Added [NNSiam](https://arxiv.org/abs/2104.14548), [NNBYOL](https://arxiv.org/abs/2104.14548), new tutorials for implementing new methods [1](https://solo-learn.readthedocs.io/en/latest/tutorials/add_new_method.html) and [2](https://solo-learn.readthedocs.io/en/latest/tutorials/add_new_method_momentum.html), more testing and fixed issues with custom data and linear evaluation.
* **[Sep 19 2021]**: :kangaroo: Added online k-NN evaluation.
* **[Sep 17 2021]**: :robot: Added [ViT](https://arxiv.org/abs/2010.11929) and [Swin](https://arxiv.org/abs/2103.14030).
* **[Sep 13 2021]**: :book: Improved [Docs](https://solo-learn.readthedocs.io/en/latest/?badge=latest) and added tutorials for [pretraining](https://solo-learn.readthedocs.io/en/latest/tutorials/overview.html) and [offline linear eval](https://solo-learn.readthedocs.io/en/latest/tutorials/offline_linear_eval.html).
* **[Aug 13 2021]**: :whale: [DeepCluster V2](https://arxiv.org/abs/2006.09882) is now available.

---

## Roadmap and help needed
* Redoing the documentation to improve clarity.
* Better and up-to-date tutorials.
* Add performance-related testing to ensure that methods perform the same across updates.
* Adding new methods (continuous effort).

---

## Methods available
* [All4One](https://openaccess.thecvf.com/content/ICCV2023/html/Estepa_All4One_Symbiotic_Neighbour_Contrastive_Learning_via_Self-Attention_and_Redundancy_Reduction_ICCV_2023_paper.html)
* [Barlow Twins](https://arxiv.org/abs/2103.03230)
* [BYOL](https://arxiv.org/abs/2006.07733)
* [DeepCluster V2](https://arxiv.org/abs/2006.09882)
* [DINO](https://arxiv.org/abs/2104.14294)
* [MAE](https://arxiv.org/abs/2111.06377)
* [MoCo V2+](https://arxiv.org/abs/2003.04297)
* [MoCo V3](https://arxiv.org/abs/2104.02057)
* [NNBYOL](https://arxiv.org/abs/2104.14548)
* [NNCLR](https://arxiv.org/abs/2104.14548)
* [NNSiam](https://arxiv.org/abs/2104.14548)
* [ReSSL](https://arxiv.org/abs/2107.09282)
* [SimCLR](https://arxiv.org/abs/2002.05709)
* [SimSiam](https://arxiv.org/abs/2011.10566)
* [Supervised Contrastive Learning](https://arxiv.org/abs/2004.11362)
* [SwAV](https://arxiv.org/abs/2006.09882)
* [VIbCReg](https://arxiv.org/abs/2109.00783)
* [VICReg](https://arxiv.org/abs/2105.04906)
* [W-MSE](https://arxiv.org/abs/2007.06346)

---

## Extra flavor

### Backbones
* [ResNet](https://arxiv.org/abs/1512.03385)
* [WideResNet](https://arxiv.org/abs/1605.07146)
* [ViT](https://arxiv.org/abs/2010.11929)
* [Swin](https://arxiv.org/abs/2103.14030)
* [PoolFormer](https://arxiv.org/abs/2111.11418)
* [ConvNeXt](https://arxiv.org/abs/2201.03545)

### Data
* Increased data processing speed by up to 100% using [Nvidia Dali](https://github.com/NVIDIA/DALI).
* Flexible augmentations.

### Evaluation
* Online linear evaluation via stop-gradient for easier debugging and prototyping (optionally available for the momentum backbone as well).
* Standard offline linear evaluation.
* Online and offline K-NN evaluation.
* Automatic feature space visualization with UMAP.

### Training tricks
* All the perks of PyTorch Lightning (mixed precision, gradient accumulation, clipping, and much more).
* Channel last conversion
* Multi-cropping dataloading following [SwAV](https://arxiv.org/abs/2006.09882):
* **Note**: currently, only SimCLR, BYOL and SwAV support this.
* Exclude batchnorm and biases from weight decay and LARS.
* No LR scheduler for the projection head (as in SimSiam).

### Logging
* Metric logging on the cloud with [WandB](https://wandb.ai/site)
* Custom model checkpointing with a simple file organization.

---
## Requirements
* torch
* torchvision
* tqdm
* einops
* wandb
* pytorch-lightning
* lightning-bolts
* torchmetrics
* scipy
* timm

**Optional**:
* nvidia-dali
* matplotlib
* seaborn
* pandas
* umap-learn

---

## Installation

First clone the repo.

Then, to install solo-learn with [Dali](https://github.com/NVIDIA/DALI) and/or UMAP support, use:
```bash
pip3 install .[dali,umap,h5] --extra-index-url https://developer.download.nvidia.com/compute/redist
```

If no Dali/UMAP/H5 support is needed, the repository can be installed as:
```bash
pip3 install .
```

For local development:
```bash
pip3 install -e .[umap,h5]
# Make sure you have pre-commit hooks installed
pre-commit install
```

**NOTE:** if you are having trouble with dali, install it following their [guide](https://github.com/NVIDIA/DALI).

**NOTE 2:** consider installing [Pillow-SIMD](https://github.com/uploadcare/pillow-simd) for better loading times when not using Dali.

**NOTE 3:** Soon to be on pip.

---

## Training

For pretraining the backbone, follow one of the many bash files in `scripts/pretrain/`.
We are now using [Hydra](https://github.com/facebookresearch/hydra) to handle the config files, so the common syntax is something like:
```bash
python3 main_pretrain.py \
# path to training script folder
--config-path scripts/pretrain/imagenet-100/ \
# training config name
--config-name barlow.yaml
# add new arguments (e.g. those not defined in the yaml files)
# by doing ++new_argument=VALUE
# pytorch lightning's arguments can be added here as well.
```

After that, for offline linear evaluation, follow the examples in `scripts/linear` or `scripts/finetune` for finetuning the whole backbone.

For k-NN evaluation and UMAP visualization check the scripts in `scripts/{knn,umap}`.

**NOTE:** Files try to be up-to-date and follow as closely as possible the recommended parameters of each paper, but check them before running.

---

## Tutorials

Please, check out our [documentation](https://solo-learn.readthedocs.io/en/latest) and tutorials:
* [Overview](https://solo-learn.readthedocs.io/en/latest/tutorials/overview.html)
* [Offline linear eval](https://solo-learn.readthedocs.io/en/latest/tutorials/offline_linear_eval.html)
* [Object detection](https://github.com/vturrisi/solo-learn/blob/main/downstream/object_detection/README.md)
* [Adding a new method](https://github.com/vturrisi/solo-learn/blob/main/docs/source/tutorials/add_new_method.rst)
* [Adding a new momentum method](https://github.com/vturrisi/solo-learn/blob/main/docs/source/tutorials/add_new_method_momentum.rst)
* [Visualizing features with UMAP](https://github.com/vturrisi/solo-learn/blob/main/docs/source/tutorials/umap.rst)
* [Offline k-NN](https://github.com/vturrisi/solo-learn/blob/main/docs/source/tutorials/knn.rst)

If you want to contribute to solo-learn, make sure you take a look at [how to contribute](https://github.com/vturrisi/solo-learn/blob/main/.github/CONTRIBUTING.md) and follow the [code of conduct](https://github.com/vturrisi/solo-learn/blob/main/.github/CODE_OF_CONDUCT.md)

---

## Model Zoo

All pretrained models avaiable can be downloaded directly via the tables below or programmatically by running one of the following scripts
`zoo/cifar10.sh`, `zoo/cifar100.sh`, `zoo/imagenet100.sh` and `zoo/imagenet.sh`.

---

## Results

**Note:** hyperparameters may not be the best, we will be re-running the methods with lower performance eventually.

### CIFAR-10

| Method | Backbone | Epochs | Dali | Acc@1 | Acc@5 | Checkpoint |
|--------------|:--------:|:------:|:----:|:--------------:|:--------------:|:----------:|
| All4One | ResNet18 | 1000 | :x: | 93.24 | 99.88 | [:link:](https://drive.google.com/drive/folders/1dtYmZiftruQ7B2PQ8fo44wguCZ0eSzAd?usp=sharing) |
| Barlow Twins | ResNet18 | 1000 | :x: | 92.10 | 99.73 | [:link:](https://drive.google.com/drive/folders/1L5RAM3lCSViD2zEqLtC-GQKVw6mxtxJ_?usp=sharing) |
| BYOL | ResNet18 | 1000 | :x: | 92.58 | 99.79 | [:link:](https://drive.google.com/drive/folders/1KxeYAEE7Ev9kdFFhXWkPZhG-ya3_UwGP?usp=sharing) |
|DeepCluster V2| ResNet18 | 1000 | :x: | 88.85 | 99.58 | [:link:](https://drive.google.com/drive/folders/1tkEbiDQ38vZaQUsT6_vEpxbDxSUAGwF-?usp=sharing) |
| DINO | ResNet18 | 1000 | :x: | 89.52 | 99.71 | [:link:](https://drive.google.com/drive/folders/1vyqZKUyP8sQyEyf2cqonxlGMbQC-D1Gi?usp=sharing) |
| MoCo V2+ | ResNet18 | 1000 | :x: | 92.94 | 99.79 | [:link:](https://drive.google.com/drive/folders/1ruNFEB3F-Otxv2Y0p62wrjA4v5Fr2cKC?usp=sharing) |
| MoCo V3 | ResNet18 | 1000 | :x: | 93.10 | 99.80 | [:link:](https://drive.google.com/drive/folders/1KwZTshNEpmqnYJcmyYPvfIJ_DNwqtAVj?usp=sharing) |
| NNCLR | ResNet18 | 1000 | :x: | 91.88 | 99.78 | [:link:](https://drive.google.com/drive/folders/1xdCzhvRehPmxinphuiZqFlfBwfwWDcLh?usp=sharing) |
| ReSSL | ResNet18 | 1000 | :x: | 90.63 | 99.62 | [:link:](https://drive.google.com/drive/folders/1jrFcztY2eO_fG98xPshqOD15pDIhLXp-?usp=sharing) |
| SimCLR | ResNet18 | 1000 | :x: | 90.74 | 99.75 | [:link:](https://drive.google.com/drive/folders/1mcvWr8P2WNJZ7TVpdLHA_Q91q4VK3y8O?usp=sharing) |
| Simsiam | ResNet18 | 1000 | :x: | 90.51 | 99.72 | [:link:](https://drive.google.com/drive/folders/1OO_igM3IK5oDw7GjQTNmdfg2I1DH3xOk?usp=sharing) |
| SupCon | ResNet18 | 1000 | :x: | 93.82 | 99.65 | [:link:](https://drive.google.com/drive/folders/1VwZ9TrJXCpnxyo7P_l397yGrGH-DAUv-?usp=sharing) |
| SwAV | ResNet18 | 1000 | :x: | 89.17 | 99.68 | [:link:](https://drive.google.com/drive/folders/1nlJH4Ljm8-5fOIeAaKppQT6gtsmmW1T0?usp=sharing) |
| VIbCReg | ResNet18 | 1000 | :x: | 91.18 | 99.74 | [:link:](https://drive.google.com/drive/folders/1XvxUOnLPZlC_-OkeuO7VqXT7z9_tNVk7?usp=sharing) |
| VICReg | ResNet18 | 1000 | :x: | 92.07 | 99.74 | [:link:](https://drive.google.com/drive/folders/159ZgCxocB7aaHxwNDubnAWU71zXV9hn-?usp=sharing) |
| W-MSE | ResNet18 | 1000 | :x: | 88.67 | 99.68 | [:link:](https://drive.google.com/drive/folders/1xPCiULzQ4JCmhrTsbxBp9S2jRZ01KiVM?usp=sharing) |

### CIFAR-100

| Method | Backbone | Epochs | Dali | Acc@1 | Acc@5 | Checkpoint |
|--------------|:--------:|:------:|:----:|:--------------:|:--------------:|:----------:|
| All4One | ResNet18 | 1000 | :x: | 72.17 | 93.35 | [:link:](https://drive.google.com/drive/folders/1oQcC80XPr-Wxhjs-PEqD_8VhUa_izqeZ?usp=sharing) |
| Barlow Twins | ResNet18 | 1000 | :x: | 70.90 | 91.91 | [:link:](https://drive.google.com/drive/folders/1hDLSApF3zSMAKco1Ck4DMjyNxhsIR2yq?usp=sharing) |
| BYOL | ResNet18 | 1000 | :x: | 70.46 | 91.96 | [:link:](https://drive.google.com/drive/folders/1hwsEdsfsUulD2tAwa4epKK9pkSuvFv6m?usp=sharing) |
|DeepCluster V2| ResNet18 | 1000 | :x: | 63.61 | 88.09 | [:link:](https://drive.google.com/drive/folders/1gAKyMz41mvGh1BBOYdc_xu6JPSkKlWqK?usp=sharing) |
| DINO | ResNet18 | 1000 | :x: | 66.76 | 90.34 | [:link:](https://drive.google.com/drive/folders/1TxeZi2YLprDDtbt_y5m29t4euroWr1Fy?usp=sharing) |
| MoCo V2+ | ResNet18 | 1000 | :x: | 69.89 | 91.65 | [:link:](https://drive.google.com/drive/folders/15oWNM16vO6YVYmk_yOmw2XUrFivRXam4?usp=sharing) |
| MoCo V3 | ResNet18 | 1000 | :x: | 68.83 | 90.57 | [:link:](https://drive.google.com/drive/folders/1Hcf9kMIADKydfxvXLquY9nv7sfNaJ3v6?usp=sharing) |
| NNCLR | ResNet18 | 1000 | :x: | 69.62 | 91.52 | [:link:](https://drive.google.com/drive/folders/1Dz72o0-5hugYPW1kCCQDBb0Xi3kzMLzu?usp=sharing) |
| ReSSL | ResNet18 | 1000 | :x: | 65.92 | 89.73 | [:link:](https://drive.google.com/drive/folders/1aVZs9cHAu6Ccz8ILyWkp6NhTsJGBGfjr?usp=sharing) |
| SimCLR | ResNet18 | 1000 | :x: | 65.78 | 89.04 | [:link:](https://drive.google.com/drive/folders/13pGPcOO9Y3rBoeRVWARgbMFEp8OXxZa0?usp=sharing) |
| Simsiam | ResNet18 | 1000 | :x: | 66.04 | 89.62 | [:link:](https://drive.google.com/drive/folders/1AJUPmsIHh_nqEcFe-Vcz2o4ruEibFHWO?usp=sharing) |
| SupCon | ResNet18 | 1000 | :x: | 70.38 | 89.57 | [:link:](https://drive.google.com/drive/folders/15C68oHPDMAOPtmBAm_Xw6YI6GgOW00gM?usp=sharing) |
| SwAV | ResNet18 | 1000 | :x: | 64.88 | 88.78 | [:link:](https://drive.google.com/drive/folders/1U_bmyhlPEN941hbx0SdRGOT4ivCarQB9?usp=sharing) |
| VIbCReg | ResNet18 | 1000 | :x: | 67.37 | 90.07 | [:link:](https://drive.google.com/drive/folders/19u3p1maX3xqwoCHNrqSDb98J5fRvd_6v?usp=sharing) |
| VICReg | ResNet18 | 1000 | :x: | 68.54 | 90.83 | [:link:](https://drive.google.com/drive/folders/1AHmVf_Zl5fikkmR4X3NWlmMOnRzfv0aT?usp=sharing) |
| W-MSE | ResNet18 | 1000 | :x: | 61.33 | 87.26 | [:link:](https://drive.google.com/drive/folders/1vc9j3RLpVCbECh6o-44oMiE5snNyKPlF?usp=sharing) |

### ImageNet-100

| Method | Backbone | Epochs | Dali | Acc@1 (online) | Acc@1 (offline) | Acc@5 (online) | Acc@5 (offline) | Checkpoint |
|-------------------------|:--------:|:------:|:------------------:|:--------------:|:---------------:|:--------------:|:---------------:|:----------:|
| All4One | ResNet18 | 400 | :heavy_check_mark: | 81.93 | - | 96.23 | - | [:link:](https://drive.google.com/drive/folders/1bJCRLP5Rz_JEylNq9C4sY3ccYZSchUGR?usp=sharing) |
| Barlow Twins :rocket: | ResNet18 | 400 | :heavy_check_mark: | 80.38 | 80.16 | 95.28 | 95.14 | [:link:](https://drive.google.com/drive/folders/1rj8RbER9E71mBlCHIZEIhKPUFn437D5O?usp=sharing) |
| BYOL :rocket: | ResNet18 | 400 | :heavy_check_mark: | 80.16 | 80.32 | 95.02 | 94.94 | [:link:](https://drive.google.com/drive/folders/1riOLjMawD_znO4HYj8LBN2e1X4jXpDE1?usp=sharing) |
| DeepCluster V2 | ResNet18 | 400 | :x: | 75.36 | 75.4 | 93.22 | 93.10 | [:link:](https://drive.google.com/drive/folders/1d5jPuavrQ7lMlQZn5m2KnN5sPMGhHFo8?usp=sharing) |
| DINO | ResNet18 | 400 | :heavy_check_mark: | 74.84 | 74.92 | 92.92 | 92.78 | [:link:](https://drive.google.com/drive/folders/1NtVvRj-tQJvrMxRlMtCJSAecQnYZYkqs?usp=sharing) |
| DINO :sleepy: | ViT Tiny | 400 | :x: | 63.04 | TODO | 87.72 | TODO | [:link:](https://drive.google.com/drive/folders/16AfsM-UpKky43kdSMlqj4XRe69pRdJLc?usp=sharing) |
| MoCo V2+ :rocket: | ResNet18 | 400 | :heavy_check_mark: | 78.20 | 79.28 | 95.50 | 95.18 | [:link:](https://drive.google.com/drive/folders/1ItYBtMJ23Yh-Rhrvwjm4w1waFfUGSoKX?usp=sharing) |
| MoCo V3 :rocket: | ResNet18 | 400 | :heavy_check_mark: | 80.36 | 80.36 | 95.18 | 94.96 | [:link:](https://drive.google.com/drive/folders/15J0JiZsQAsrQler8mbbio-desb_nVoD1?usp=sharing) |
| MoCo V3 :rocket: | ResNet50 | 400 | :heavy_check_mark: | 85.48 | 84.58 | 96.82 | 96.70 | [:link:](https://drive.google.com/drive/folders/1a1VRXGlP50COZ57DPUA_doBmpaxGKpQE?usp=sharing) |
| NNCLR :rocket: | ResNet18 | 400 | :heavy_check_mark: | 79.80 | 80.16 | 95.28 | 95.30 | [:link:](https://drive.google.com/drive/folders/1QMkq8w3UsdcZmoNUIUPgfSCAZl_LSNjZ?usp=sharing) |
| ReSSL | ResNet18 | 400 | :heavy_check_mark: | 76.92 | 78.48 | 94.20 | 94.24 | [:link:](https://drive.google.com/drive/folders/1urWIFACLont4GAduis6l0jcEbl080c9U?usp=sharing) |
| SimCLR :rocket: | ResNet18 | 400 | :heavy_check_mark: | 77.64 | TODO | 94.06 | TODO | [:link:](https://drive.google.com/drive/folders/1yxAVKnc8Vf0tDfkixSB5mXe7dsA8Ll37?usp=sharing) |
| Simsiam | ResNet18 | 400 | :heavy_check_mark: | 74.54 | 78.72 | 93.16 | 94.78 | [:link:](https://drive.google.com/drive/folders/1Bc8Xj-Z7ILmspsiEQHyQsTOn4M99F_f5?usp=sharing) |
| SupCon | ResNet18 | 400 | :heavy_check_mark: | 84.40 | TODO | 95.72 | TODO | [:link:](https://drive.google.com/drive/folders/1BzR0nehkCKpnLhi-oeDynzzUcCYOCUJi?usp=sharing) |
| SwAV | ResNet18 | 400 | :heavy_check_mark: | 74.04 | 74.28 | 92.70 | 92.84 | [:link:](https://drive.google.com/drive/folders/1VWCMM69sokzjVoPzPSLIsUy5S2Rrm1xJ?usp=sharing) |
| VIbCReg | ResNet18 | 400 | :heavy_check_mark: | 79.86 | 79.38 | 94.98 | 94.60 | [:link:](https://drive.google.com/drive/folders/1Q06hH18usvRwj2P0bsmoCkjNUX_0syCK?usp=sharing) |
| VICReg :rocket: | ResNet18 | 400 | :heavy_check_mark: | 79.22 | 79.40 | 95.06 | 95.02 | [:link:](https://drive.google.com/drive/folders/1uWWR5VBUru8vaHaGeLicS6X3R4CfZsr2?usp=sharing) |
| W-MSE | ResNet18 | 400 | :heavy_check_mark: | 67.60 | 69.06 | 90.94 | 91.22 | [:link:](https://drive.google.com/drive/folders/1TxubagNV4z5Qs7SqbBcyRHWGKevtFO5l?usp=sharing) |

:rocket: methods where hyperparameters were heavily tuned.

:sleepy: ViT is very compute intensive and unstable, so we are slowly running larger architectures and with a larger batch size. Atm, total batch size is 128 and we needed to use float32 precision. If you want to contribute by running it, let us know!

### ImageNet

| Method | Backbone | Epochs | Dali | Acc@1 (online) | Acc@1 (offline) | Acc@5 (online) | Acc@5 (offline) | Checkpoint | Finetuned Checkpoint
|--------------|:--------:|:------:|:------------------:|:--------------:|:---------------:|:--------------:|:---------------:|:----------:|:----------:|
| Barlow Twins | ResNet50 | 100 | :heavy_check_mark: | 67.18 | 67.23 | 87.69 | 87.98 | [:link:](https://drive.google.com/drive/folders/1IQUIrCOSduAjUJ31WJ1G5tHDZzWUIEft?usp=sharing) | |
| BYOL | ResNet50 | 100 | :heavy_check_mark: | 68.63 | 68.37 | 88.80 | 88.66 | [:link:](https://drive.google.com/drive/folders/1-UXo-MttdrqiEQXfV4Duc93fA3mIdsha?usp=sharing) | |
| MoCo V2+ | ResNet50 | 100 | :heavy_check_mark: | 62.61 | 66.84 | 85.40 | 87.60 | [:link:](https://drive.google.com/drive/folders/1NiBDmieEpNqkwrgn_H7bMnEDVAYc8Sk7?usp=sharing) | |
| MAE | ViT-B/16 | 100 | :x: | ~ | 81.60 (finetuned) | ~ | 95.50 (finetuned) | [:link:](https://drive.google.com/drive/folders/1OuaXCnQ7WeqyKPxfJibAkXoVTx7S8Hbb) | [:link:](https://drive.google.com/drive/folders/1c9DGhmLsTTtOu2vc9rodqm89wKtp40C5) |

## Training efficiency for DALI

We report the training efficiency of some methods using a ResNet18 with and without DALI (4 workers per GPU) in a server with an Intel i9-9820X and two RTX2080ti.

| Method | Dali | Total time for 20 epochs | Time for 1 epoch | GPU memory (per GPU) |
|--------------|:----------------:|:--------------------------:|:--------------------:|:---------------------:|
| Barlow Twins | :x: | 1h 38m 27s | 4m 55s | 5097 MB |
| |:heavy_check_mark:| 43m 2s | 2m 10s (56% faster) | 9292 MB |
| BYOL | :x: | 1h 38m 46s | 4m 56s | 5409 MB |
| |:heavy_check_mark:| 50m 33s | 2m 31s (49% faster) | 9521 MB |
| NNCLR | :x: | 1h 38m 30s | 4m 55s | 5060 MB |
| |:heavy_check_mark:| 42m 3s | 2m 6s (64% faster) | 9244 MB |

**Note**: GPU memory increase doesn't scale with the model, rather it scales with the number of workers.

---

## Citation
If you use solo-learn, please cite our [paper](https://jmlr.org/papers/v23/21-1155.html):
```bibtex
@article{JMLR:v23:21-1155,
author = {Victor Guilherme Turrisi da Costa and Enrico Fini and Moin Nabi and Nicu Sebe and Elisa Ricci},
title = {solo-learn: A Library of Self-supervised Methods for Visual Representation Learning},
journal = {Journal of Machine Learning Research},
year = {2022},
volume = {23},
number = {56},
pages = {1-6},
url = {http://jmlr.org/papers/v23/21-1155.html}
}
```