Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vzhong/embeddings
Fast, DB Backed pretrained word embeddings for natural language processing.
https://github.com/vzhong/embeddings
deep-learning neural-network nlp
Last synced: 1 day ago
JSON representation
Fast, DB Backed pretrained word embeddings for natural language processing.
- Host: GitHub
- URL: https://github.com/vzhong/embeddings
- Owner: vzhong
- License: mit
- Created: 2017-02-27T04:05:12.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2023-10-23T11:09:11.000Z (about 1 year ago)
- Last Synced: 2025-01-04T04:09:10.865Z (9 days ago)
- Topics: deep-learning, neural-network, nlp
- Language: Python
- Homepage:
- Size: 46.9 KB
- Stars: 223
- Watchers: 4
- Forks: 31
- Open Issues: 1
-
Metadata Files:
- Readme: README.rst
- License: LICENSE
Awesome Lists containing this project
- awesome-deeplearning-resources - Available pretrained word embeddings
README
Embeddings
==========.. image:: https://readthedocs.org/projects/embeddings/badge/?version=latest
:target: http://embeddings.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://travis-ci.org/vzhong/embeddings.svg?branch=master
:target: https://travis-ci.org/vzhong/embeddingsEmbeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning.
Instead of loading a large file to query for embeddings, ``embeddings`` is backed by a database and fast to load and query:
.. code-block:: python
>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300)
100 loops, best of 3: 12.7 ms per loop
>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300).emb('canada')
100 loops, best of 3: 12.9 ms per loop
>>> g = GloveEmbedding('common_crawl_840', d_emb=300)
>>> %timeit -n1 g.emb('canada')
1 loop, best of 3: 38.2 µs per loopInstallation
------------.. code-block:: sh
pip install embeddings # from pypi
pip install git+https://github.com/vzhong/embeddings.git # from githubUsage
-----Upon first use, the embeddings are first downloaded to disk in the form of a SQLite database.
This may take a long time for large embeddings such as GloVe.
Further usage of the embeddings are directly queried against the database.
Embedding databases are stored in the ``$EMBEDDINGS_ROOT`` directory (defaults to ``~/.embeddings``). Note that this location is probably **undesirable** if your home directory is on NFS, as it would slow down database queries significantly... code-block:: python
from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding
g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
print('embedding {}'.format(w))
print(g.emb(w))
print(f.emb(w))
print(k.emb(w))
print(c.emb(w))Docker
------If you use Docker, an image prepopulated with the Common Crawl 840 GloVe embeddings and Kazuma Hashimoto's character ngram embeddings is available at `vzhong/embeddings `_.
To mount volumes from this container, set ``$EMBEDDINGS_ROOT`` in your container to ``/opt/embeddings``.For example:
.. code-block:: bash
docker run --volumes-from vzhong/embeddings -e EMBEDDINGS_ROOT='/opt/embeddings' myimage python train.py
Contribution
------------Pull requests welcome!