Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/vzhong/embeddings

Fast, DB Backed pretrained word embeddings for natural language processing.
https://github.com/vzhong/embeddings

deep-learning neural-network nlp

Last synced: 1 day ago
JSON representation

Fast, DB Backed pretrained word embeddings for natural language processing.

Awesome Lists containing this project

README

        

Embeddings
==========

.. image:: https://readthedocs.org/projects/embeddings/badge/?version=latest
:target: http://embeddings.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://travis-ci.org/vzhong/embeddings.svg?branch=master
:target: https://travis-ci.org/vzhong/embeddings

Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning.

Instead of loading a large file to query for embeddings, ``embeddings`` is backed by a database and fast to load and query:

.. code-block:: python

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300)
100 loops, best of 3: 12.7 ms per loop

>>> %timeit GloveEmbedding('common_crawl_840', d_emb=300).emb('canada')
100 loops, best of 3: 12.9 ms per loop

>>> g = GloveEmbedding('common_crawl_840', d_emb=300)

>>> %timeit -n1 g.emb('canada')
1 loop, best of 3: 38.2 µs per loop

Installation
------------

.. code-block:: sh

pip install embeddings # from pypi
pip install git+https://github.com/vzhong/embeddings.git # from github

Usage
-----

Upon first use, the embeddings are first downloaded to disk in the form of a SQLite database.
This may take a long time for large embeddings such as GloVe.
Further usage of the embeddings are directly queried against the database.
Embedding databases are stored in the ``$EMBEDDINGS_ROOT`` directory (defaults to ``~/.embeddings``). Note that this location is probably **undesirable** if your home directory is on NFS, as it would slow down database queries significantly.

.. code-block:: python

from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding

g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
print('embedding {}'.format(w))
print(g.emb(w))
print(f.emb(w))
print(k.emb(w))
print(c.emb(w))

Docker
------

If you use Docker, an image prepopulated with the Common Crawl 840 GloVe embeddings and Kazuma Hashimoto's character ngram embeddings is available at `vzhong/embeddings `_.
To mount volumes from this container, set ``$EMBEDDINGS_ROOT`` in your container to ``/opt/embeddings``.

For example:

.. code-block:: bash

docker run --volumes-from vzhong/embeddings -e EMBEDDINGS_ROOT='/opt/embeddings' myimage python train.py

Contribution
------------

Pull requests welcome!