Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vzhou842/easy-vqa-keras
A Keras implementation of VQA using the easy-VQA dataset.
https://github.com/vzhou842/easy-vqa-keras
easy-vqa keras keras-tensorflow vqa
Last synced: 2 months ago
JSON representation
A Keras implementation of VQA using the easy-VQA dataset.
- Host: GitHub
- URL: https://github.com/vzhou842/easy-vqa-keras
- Owner: vzhou842
- License: mit
- Created: 2019-10-27T22:35:26.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2020-08-16T23:48:32.000Z (over 4 years ago)
- Last Synced: 2024-08-02T18:40:05.542Z (5 months ago)
- Topics: easy-vqa, keras, keras-tensorflow, vqa
- Language: Python
- Homepage: https://easy-vqa-demo.victorzhou.com/
- Size: 42 KB
- Stars: 22
- Watchers: 4
- Forks: 7
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# easy-VQA-keras
A Keras implementation of a simple Visual Question Answering (VQA) architecture, using the [easy-VQA](https://github.com/vzhou842/easy-VQA) dataset.
Methodology described in the official [blog post](https://victorzhou.com/blog/easy-vqa/). See [easy-VQA featured on the official VQA site](https://visualqa.org/external.html)!
## Usage
### Setup and Basic Usage
First, clone the repo and install the dependencies:
```shell
git clone https://github.com/vzhou842/easy-VQA-keras.git
cd easy-VQA-keras
pip install -r requirements.txt
```To run the model,
```shell
python train.py
```A typical run with should have results that look like this:
```shell
Epoch 1/8
loss: 0.8887 - accuracy: 0.6480 - val_loss: 0.7504 - val_accuracy: 0.6838
Epoch 2/8
loss: 0.7443 - accuracy: 0.6864 - val_loss: 0.7118 - val_accuracy: 0.7095
Epoch 3/8
loss: 0.6419 - accuracy: 0.7468 - val_loss: 0.5659 - val_accuracy: 0.7780
Epoch 4/8
loss: 0.5140 - accuracy: 0.7981 - val_loss: 0.4720 - val_accuracy: 0.8138
Epoch 5/8
loss: 0.4155 - accuracy: 0.8320 - val_loss: 0.3938 - val_accuracy: 0.8392
Epoch 6/8
loss: 0.3078 - accuracy: 0.8775 - val_loss: 0.3139 - val_accuracy: 0.8762
Epoch 7/8
loss: 0.1982 - accuracy: 0.9286 - val_loss: 0.2202 - val_accuracy: 0.9212
Epoch 8/8
loss: 0.1157 - accuracy: 0.9627 - val_loss: 0.1883 - val_accuracy: 0.9378
```
Read the "Training" section for how you might improve the accuracy of the model--we were able to get it ot 99.5% validation accuracy!.### Training
The training script `train.py` has two optional arguments:
```shell
python train.py [--big-model] [--use-data-dir]Optional arguments:
--big-model Use the bigger model with more conv layers
--use-data-dir Use custom data directory, at /data
```The `--big-model` flag trains a slightly larger model, that we
used to train a 99.5% accuracy model used in the following [live demo](https://easy-vqa-demo.victorzhou.com/).Furthermore, instead of using the official [easy-vqa package](https://pypi.org/project/easy-vqa/), you generate your own dataset using [the easy-VQA repo](https://github.com/vzhou842/easy-VQA) and use that instead.
After following the instructions in that repo, just copy the `/data` folder into
the root directory of this repository, so that your files look like this:```shell
easy-VQA-keras/
├── data/
├── answers.txt
├── test/
├── train/
├── analyze.py
├── model.py
├── prepare_data.py
└── train.py
```For the 99.5% accuracy model, we used a custom dataset generated with double the images/questions
as the official dataset (set `NUM_TRAIN` and `NUM_TEST` to 8000 and 2000,
respectively, for the `easy-VQA` repo).### Other Files
In addition to the training script, we have three other files:
- `analyze.py`, a script we used to debug our models. Run using a model weights
file, and produce statistics about model outputs and confusion matrices to
analyze model errors.
- `model.py`, where the model architecture is specified
- `prepare_data.py`, which reads and processes the data, either using the
[easy-vqa package](https://pypi.org/project/easy-vqa/) or a custom data directory