Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wagamamaz/tensorflow-tutorial
TensorFlow and Deep Learning Tutorials
https://github.com/wagamamaz/tensorflow-tutorial
autoencoder cnn convolutional-neural-networks deep-learning deep-learning-tutorial deep-reinforcement-learning keras machine-learning multi-layer-perceptron neural-machine-translation neural-network neural-networks nlp notebook recurrent-neural-networks reinforcement-learning tensorflow tensorflow-tutorials tensorlayer tflearn
Last synced: 6 days ago
JSON representation
TensorFlow and Deep Learning Tutorials
- Host: GitHub
- URL: https://github.com/wagamamaz/tensorflow-tutorial
- Owner: wagamamaz
- Created: 2016-08-25T17:11:00.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2018-02-26T23:00:27.000Z (almost 7 years ago)
- Last Synced: 2025-02-08T11:09:49.832Z (13 days ago)
- Topics: autoencoder, cnn, convolutional-neural-networks, deep-learning, deep-learning-tutorial, deep-reinforcement-learning, keras, machine-learning, multi-layer-perceptron, neural-machine-translation, neural-network, neural-networks, nlp, notebook, recurrent-neural-networks, reinforcement-learning, tensorflow, tensorflow-tutorials, tensorlayer, tflearn
- Homepage:
- Size: 7.81 KB
- Stars: 733
- Watchers: 66
- Forks: 210
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# TensorFlow and Deep Learning Tutorials
## Google's Deep Learning Tutorials
- [TensorFlow Official Deep Learning Tutorial](https://www.tensorflow.org/versions/master/tutorials/index.html) [[中文]](http://wiki.jikexueyuan.com/project/tensorflow-zh/).
- MLP with Dropout [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.html) [[中文]](http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html) [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#tensorlayer-is-simple) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#tensorlayer)
- Autoencoder [TensorLayer](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#tensorlayer) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#denoising-autoencoder)
- Convolutional Neural Network [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html) [[中文]](http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_pros.html) [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#convolutional-neural-network-cnn) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#convolutional-neural-network)
- Recurrent Neural Network [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/recurrent/index.html#recurrent-neural-networks) [[中文]](http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/recurrent.html) [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#understand-lstm) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#lstm)
- Deep Reinforcement Learning [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#understand-reinforcement-learning) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#id13)
- Sequence to Sequence [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/seq2seq/index.html#sequence-to-sequence-models) [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#understand-translation)[[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#id30)
- Word Embedding [TensorFlow](https://www.tensorflow.org/versions/master/tutorials/word2vec/index.html#vector-representations-of-words) [[中文]](http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/word2vec.html) [TensorLayer](http://tensorlayer.readthedocs.io/en/latest/user/tutorial.html#understand-word-embedding) [[中文]](http://tensorlayercn.readthedocs.io/zh/latest/user/tutorial.html#word-embedding)
## Deep Learning Reading List- [MIT Deep Learning Book](http://www.deeplearningbook.org)
- [Karpathy Blog](http://karpathy.github.io)
- [Stanford UFLDL Tutorials](http://deeplearning.stanford.edu/tutorial/)
- [Colah's Blog - Word Embedding](http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/) [[中文]](http://dataunion.org/9331.html)
- [Colah's Blog - Understand LSTN](http://colah.github.io/posts/2015-08-Understanding-LSTMs/) [[门函数]](http://mp.weixin.qq.com/s?__biz=MzI3NDExNDY3Nw==&mid=2649764821&idx=1&sn=dd325565b40fcbad6e90a9398414dede&scene=2&srcid=0505U2iFJ7tfXgB8yPfNkwrA&from=timeline&isappinstalled=0#wechat_redirect)
## Tutorial index
#### 0 - Prerequisite
- Introduction to Machine Learning ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb))
- Introduction to MNIST Dataset ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb))#### 1 - Introduction
- Hello World ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py))
- Basic Operations ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py))#### 2 - Basic Models
- Nearest Neighbor ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py))
- Linear Regression ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py))
- Logistic Regression ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py))#### 3 - Neural Networks
- Multilayer Perceptron ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/multilayer_perceptron.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py))
- Convolutional Neural Network ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py))
- Recurrent Neural Network (LSTM) ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py))
- Bidirectional Recurrent Neural Network (LSTM) ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py))
- Dynamic Recurrent Neural Network (LSTM) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py))
- AutoEncoder ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py))#### 4 - Utilities
- Save and Restore a model ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py))
- Tensorboard - Graph and loss visualization ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py))
- Tensorboard - Advanced visualization ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py))#### 5 - Multi GPU
- Basic Operations on multi-GPU ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_MultiGPU/multigpu_basics.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py))## Dataset
Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py).
MNIST is a database of handwritten digits, for a quick description of that dataset, you can check [this notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb).Official Website: [http://yann.lecun.com/exdb/mnist/](http://yann.lecun.com/exdb/mnist/)
## Selected Repositories
- [jtoy/awesome-tensorflow](https://github.com/jtoy/awesome-tensorflow)
- [nlintz/TensorFlow-Tutoirals](https://github.com/nlintz/TensorFlow-Tutorials)
- [adatao/tensorspark](https://github.com/adatao/tensorspark)
- [ry/tensorflow-resnet](https://github.com/ry/tensorflow-resnet)## Tricks
- [Tricks to use TensorLayer](https://github.com/wagamamaz/tensorlayer-tricks)## Examples
## Basics
- Multi-layer perceptron (MNIST) - Classification task, see [tutorial\_mnist\_simple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_simple.py).
- Multi-layer perceptron (MNIST) - Classification using Iterator, see [method1](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout1.py) and [method2](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mlp_dropout2.py).## Computer Vision
- Denoising Autoencoder (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (MNIST). Classification task, see [tutorial_mnist.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist.py).
- Convolutional Network (CIFAR-10). Classification task, see [tutorial\_cifar10.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10.py) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- VGG 16 (ImageNet). Classification task, see [tutorial_vgg16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg16.py).
- VGG 19 (ImageNet). Classification task, see [tutorial_vgg19.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_vgg19.py).
- InceptionV3 (ImageNet). Classification task, see [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Wide ResNet (CIFAR) by [ritchieng](https://github.com/ritchieng/wideresnet-tensorlayer).
- More CNN implementations of [TF-Slim](https://github.com/tensorflow/models/tree/master/research/slim) can be connected to TensorLayer via SlimNetsLayer.
- [Spatial Transformer Networks](https://arxiv.org/abs/1506.02025) by [zsdonghao](https://github.com/zsdonghao/Spatial-Transformer-Nets).
- [U-Net for brain tumor segmentation](https://github.com/zsdonghao/u-net-brain-tumor) by [zsdonghao](https://github.com/zsdonghao/u-net-brain-tumor).
- Variational Autoencoder (VAE) for (CelebA) by [yzwxx](https://github.com/yzwxx/vae-celebA).
- Variational Autoencoder (VAE) for (MNIST) by [BUPTLdy](https://github.com/BUPTLdy/tl-vae).
- Image Captioning - Reimplementation of Google's [im2txt](https://github.com/tensorflow/models/tree/master/research/im2txt) by [zsdonghao](https://github.com/zsdonghao/Image-Captioning).## Natural Language Processing
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see [tutorial_ptb_lstm.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm.py) and [tutorial\_ptb\_lstm\_state\_is_tuple.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_ptb_lstm_state_is_tuple.py).
- Word Embedding (Word2vec). Train a word embedding matrix, see [tutorial\_word2vec_basic.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial\_word2vec_basic.py).
- Restore Embedding matrix. Restore a pre-train embedding matrix, see [tutorial\_generate_text.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py).
- Text Generation. Generates new text scripts, using LSTM network, see [tutorial\_generate_text.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_generate_text.py).
- Chinese Text Anti-Spam by [pakrchen](https://github.com/pakrchen/text-antispam).
- [Chatbot in 200 lines of code](https://github.com/zsdonghao/seq2seq-chatbot) for [Seq2Seq](http://tensorlayer.readthedocs.io/en/latest/modules/layers.html#simple-seq2seq).
- FastText Sentence Classification (IMDB), see [tutorial\_imdb\_fasttext.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_imdb_fasttext.py) by [tomtung](https://github.com/tomtung).## Adversarial Learning
- DCGAN (CelebA). Generating images by [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) by [zsdonghao](https://github.com/zsdonghao/dcgan).
- [Generative Adversarial Text to Image Synthesis](https://github.com/zsdonghao/text-to-image) by [zsdonghao](https://github.com/zsdonghao/text-to-image).
- [Unsupervised Image to Image Translation with Generative Adversarial Networks](https://github.com/zsdonghao/Unsup-Im2Im) by [zsdonghao](https://github.com/zsdonghao/Unsup-Im2Im).
- [Improved CycleGAN](https://github.com/luoxier/CycleGAN_Tensorlayer) with resize-convolution by [luoxier](https://github.com/luoxier/CycleGAN_Tensorlayer)
- [Super Resolution GAN](https://arxiv.org/abs/1609.04802) by [zsdonghao](https://github.com/zsdonghao/SRGAN).
- [DAGAN: Fast Compressed Sensing MRI Reconstruction](https://github.com/nebulaV/DAGAN) by [nebulaV](https://github.com/nebulaV/DAGAN).## Reinforcement Learning
- Policy Gradient / Network (Atari Ping Pong), see [tutorial\_atari_pong.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_atari_pong.py).
- Deep Q-Network (Frozen lake), see [tutorial\_frozenlake_dqn.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_dqn.py).
- Q-Table learning algorithm (Frozen lake), see [tutorial\_frozenlake\_q_table.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_frozenlake_q_table.py).
- Asynchronous Policy Gradient using TensorDB (Atari Ping Pong) by [nebulaV](https://github.com/akaraspt/tl_paper).
- AC for discrete action space (Cartpole), see [tutorial\_cartpole_ac.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cartpole_ac.py).
- A3C for continuous action space (Bipedal Walker), see [tutorial\_bipedalwalker_a3c*.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_bipedalwalker_a3c_continuous_action.py).
- [DAGGER](https://www.cs.cmu.edu/%7Esross1/publications/Ross-AIStats11-NoRegret.pdf) for ([Gym Torcs](https://github.com/ugo-nama-kun/gym_torcs)) by [zsdonghao](https://github.com/zsdonghao/Imitation-Learning-Dagger-Torcs).
- [TRPO](https://arxiv.org/abs/1502.05477) for continuous and discrete action space by [jjkke88](https://github.com/jjkke88/RL_toolbox).## Miscellaneous
- Distributed Training. [mnist](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_distributed.py) and [imagenet](https://github.com/tensorlayer/tensorlayer/blob/master/example/tutorial_imagenet_inceptionV3_distributed.py) by [jorgemf](https://github.com/jorgemf).
- Merge TF-Slim into TensorLayer. [tutorial\_inceptionV3_tfslim.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_inceptionV3_tfslim.py).
- Merge Keras into TensorLayer. [tutorial_keras.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_keras.py).
- Data augmentation with TFRecord. Effective way to load and pre-process data, see [tutorial_tfrecord*.py](https://github.com/zsdonghao/tensorlayer/tree/master/example) and [tutorial\_cifar10_tfrecord.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_cifar10_tfrecord.py).
- Data augmentation with TensorLayer, see [tutorial\_image_preprocess.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_image_preprocess.py).
- TensorDB by [fangde](https://github.com/fangde) see [here](https://github.com/akaraspt/tl_paper).
- A simple web service - [TensorFlask](https://github.com/JoelKronander/TensorFlask) by [JoelKronander](https://github.com/JoelKronander).
- Float 16 half-precision model, see [tutorial\_mnist_float16.py](https://github.com/zsdonghao/tensorlayer/blob/master/example/tutorial_mnist_float16.py)
### Useful Links
- [Tricks to use TensorLayer](https://github.com/wagamamaz/tensorlayer-tricks)