Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/walidbosso/r_data_mining

Extract knowledge from a data using different techniques, including Association Rules Hierarchical Agglomerative Clustering (HAC) K-means Clustering Decision Trees
https://github.com/walidbosso/r_data_mining

association-rule-mining association-rules clustering data-analysis data-mining data-science data-visualization decision-tree-classifier decision-trees exportation extract-data hac hierarchical-clustering k-means k-means-clustering k-means-r r-programming r-studio

Last synced: 9 days ago
JSON representation

Extract knowledge from a data using different techniques, including Association Rules Hierarchical Agglomerative Clustering (HAC) K-means Clustering Decision Trees

Awesome Lists containing this project

README

        

![R_Data_mining](https://socialify.git.ci/walidbosso/R_Data_mining/image?description=1&font=Source%20Code%20Pro&forks=1&issues=1&language=1&name=1&owner=1&pattern=Formal%20Invitation&pulls=1&stargazers=1&theme=Auto)







[![GitHub WidgetBox](https://github-widgetbox.vercel.app/api/profile?username=walidbosso&data=followers,repositories,stars,commits&theme=nautilus)](https://github.com/walidbosso/R_Data_mining)







# R Data Mining

This project focuses on understanding knowledge extraction methods using RStudio. Data exploration and analysis are crucial steps in any machine learning project. In this task, we work with the Zoo database, containing information about various animals in a zoo. The objective is to extract knowledge from this data using different techniques, including:

- Association Rules
- Hierarchical Agglomerative Clustering (HAC)
- K-means Clustering
- Decision Trees

## Topics Covered

- Data Science
- Data Mining
- Clustering
- Data Visualization
- Data Analysis
- K-means
- Decision Trees
- Association Rules
- Hierarchical Clustering
- R Programming
- R Studio

## How to Use

1. Clone the repository:

```bash
git clone https://github.com/walidbosso/R_Data_mining.git
```

2. Explore the individual project files (`1-Exportation_Arbre_Clustering.R` and `2-AR.R`) for code and resources.

3. Make sure you have RStudio installed and configured.

4. Run the R scripts within your RStudio environment.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contributing

If you'd like to contribute to the project, please follow these steps:

1. Fork the repository.
2. Create a new branch (`git checkout -b feature/your-feature`).
3. Commit your changes (`git commit -m 'Add some feature'`).
4. Push to the branch (`git push origin feature/your-feature`).
5. Open a pull request.

## Issues

If you encounter any issues or have suggestions, please open an issue on the [Issues](https://github.com/walidbosso/R_Data_mining/issues) page.

Thank you for exploring the R Data Mining project! 🚀



----------------------
> >  
© *by Walid BOUSSOU*  🇲🇦 😄
 
----------------------

👏 Thanks for the support

## Stargazers

[![Stargazers repo roster for @walidbosso/R_Data_mining](http://reporoster.com/stars/dark/walidbosso/R_Data_mining)](https://github.com/walidbosso/R_Data_mining/stargazers)

## Forkers

[![Forkers repo roster for @walidbosso/R_Data_mining](http://reporoster.com/forks/dark/walidbosso/R_Data_mining)](https://github.com/walidbosso/R_Data_mining/network/members)

## Contributors





![GitHub last commit (by committer)](https://img.shields.io/github/last-commit/walidbosso/R_Data_mining?style=social)


![GitHub License](https://img.shields.io/github/license/walidbosso/R_Data_mining?style=social)









𝚂𝚑𝚘𝚠 𝚜𝚘𝚖𝚎 💙 𝚋𝚢 𝚜𝚝𝚊𝚛𝚛𝚒𝚗𝚐 ⭐ 𝚝𝚑𝚎 𝚛𝚎𝚙𝚘𝚜𝚒𝚝𝚘𝚛𝚢!


Back to top