Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wandb/awesome-dl-projects
This is a collection of the code that accompanies the reports in The Gallery by Weights & Biases.
https://github.com/wandb/awesome-dl-projects
List: awesome-dl-projects
Last synced: 2 months ago
JSON representation
This is a collection of the code that accompanies the reports in The Gallery by Weights & Biases.
- Host: GitHub
- URL: https://github.com/wandb/awesome-dl-projects
- Owner: wandb
- Created: 2020-06-24T19:18:01.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-03-14T20:39:26.000Z (almost 3 years ago)
- Last Synced: 2024-05-21T01:47:15.372Z (8 months ago)
- Language: Jupyter Notebook
- Homepage: https://app.wandb.ai/gallery
- Size: 10.8 MB
- Stars: 309
- Watchers: 15
- Forks: 46
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
Awesome Lists containing this project
- jimsghstars - wandb/awesome-dl-projects - This is a collection of the code that accompanies the reports in The Gallery by Weights & Biases. (Jupyter Notebook)
README
# Awesome Deep Learning Projects [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[The Gallery](https://wandb.ai/gallery) by Weights & Biases features curated machine learning reports by researchers exploring deep learning techniques, Kagglers showcasing winning models, and industry leaders sharing best practices.
:collision: This [hacktoberfest](https://hacktoberfest.digitalocean.com/) we are open for contributions. Check out our [`CONTRIBUTING.md`](https://github.com/wandb/awesome-dl-projects/blob/master/CONTRIBUTING.md) to learn more. :collision:
awesome-dl-projects by wandb is a collection of the code that accompanies the reports.
| Report | Description | Author |
|:----------|:-------------|-------------:|
| [Survival of the Fittest CNN Model](http://bit.ly/vlga_cnn) [![GitHub stars](github.svg)](https://github.com/ariG23498/GA-hyper-params) | Optimize the hyperparameters of a CNN with Variable Length Genetic Algorithm. | [Aritra Roy Gosthipaty](https://wandb.ai/ariG23498) |
| [Under the hood of RNNs](https:bitly.com/under_RNN) [![GitHub stars](github.svg)](https://github.com/ariG23498/RNN_Viz) | A NumPy implementation of RNN. Gradients and connectivity has been visualised too. | [Aritra Roy Gosthipaty](https://wandb.ai/ariG23498) |
| [Under the hood of LSTMs](https:bitly.com/under_LSTM) [![GitHub stars](github.svg)](https://github.com/ariG23498/RNN_Viz) | A NumPy implementation of LSTMs. Difference of architectures and the pros of LSTMs have been discussed. | [Aritra Roy Gosthipaty](https://wandb.ai/ariG23498) |
| [Get Started with TensorFlow Lite Examples Using Android Studio](https://wandb.ai/ivangoncharov/get-started-with-tensorflow-lite-and-android-studio/reports/Get-Started-with-TensorFlow-Lite-Examples-Using-Android-Studio--VmlldzoyMzQwOTQ?accessToken=2xqo8fswauxy0557d7rnkbkkkgl2serquepwcamw8qg2r0qj2zi9a20r93yns02r) [![GitHub stars](github.svg)](https://github.com/tensorflow/examples) | A step-by-step guide towards running example apps on your phone using Android Studio, TensorFlow Lite, and USB debugging. | [Ivan Goncharov](https://wandb.ai/ivangoncharov) |
| [Part 2: Deep Representations, a way towards neural style transfer](https://wandb.ai/authors/nerual_style_transfer/reports/Part-2-Deep-Representations-a-way-towards-neural-style-transfer--VmlldzoyMjYyNzk?accessToken=chqp6ks0fcbmkz87ujtgchk8qiwp2v9q8zkye44cytq1qkzt6plfv9yb8ccgrz0u) [![GitHub stars](github.svg)](https://github.com/ariG23498/NeuralStyleTransfer) | A top down approach to conceiving neural style transfer. | [Aritra Roy Gosthipaty](https://wandb.ai/arig23498) and [Devjyoti Chakraborty](https://wandb.ai/gokey768) |
| [Part 1: Deep Representations, a way towards neural style transfer](https://wandb.ai/authors/nerual_style_transfer/reports/Part-1-Deep-Representations-a-way-towards-neural-style-transfer--VmlldzoyMjQzNDY?accessToken=vhten4k3le6rozxtb626ih1keo0tksq98faw466g4brkif868micpa8qidnc2wkl) [![GitHub stars](github.svg)](https://github.com/ariG23498/NeuralStyleTransfer) | A top down approach to conceiving neural style transfer. | [Aritra Roy Gosthipaty](https://wandb.ai/arig23498) and [Devjyoti Chakraborty](https://wandb.ai/gokey768) |
| [Hyperparameter Optimization for Huggingface Transformers](https://wandb.ai/amogkam/transformers/reports/Hyperparameter-Optimization-for-Huggingface-Transformers--VmlldzoyMTc2ODI?accessToken=91lpaor9ysuj83gasn4rl75qz625hnz6cklo17289f3e0v7ohiyh0bkz0991fc65) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1tQgAKgcKQzheoh503OzhS4N9NtfFgmjF?u) | The report explains three strategies for hyperparameter optimization for Huggingface Transformers.| [Ayush Chaurasia](https://wandb.ai/cayush) |
| [Ray Tune: Distributed Hyperparameter Optimization at Scale](https://wandb.ai/authors/RayTune-dcgan/reports/Ray-Tune-Distributed-Hyperparameter-Optimization-at-Scale--VmlldzoyMDEwNDY?accessToken=knchbd797khr5204ewwr9bne9pg7ljmnd0frwjlc0nfaorzrf1wlac9qk9yu05zz) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1mK2CHV_43FwDveEHl5OUJ3cM1PwzCIZb?usp=sharing) | How to use Ray Tune with W&B to run an effective distributed hyperparameter optimization pipeline at scale. | [Ayush Chaurasia](https://wandb.ai/cayush) and [Lavanya Shukla](https://wandb.ai/lavanyashukla) |
| [Modern Scalable Hyperparameter Tuning Methods](https://wandb.ai/wandb/DistHyperOpt/reports/Modern-Scalable-Hyperparameter-Tuning-Methods--VmlldzoyMTQxODM?accessToken=nsw4hlcncv7ucazd6z8zvm8amu7ltx6zkka5vsoikola3lm7m1m3zqi1r02u2hce) [![GitHub stars](github.svg)](https://github.com/ray-project/ray/blob/master/python/ray/tune/examples/pbt_dcgan_mnist/pbt_dcgan_mnist_func.py)| A comparison of Random search, Bayesian search using HyperOpt, Bayesian search combined with Asynchronous Hyperband and Population Based Training. | [Ayush Chaurasia](https://wandb.ai/cayush) |
| [Train HuggingFace Models Twice As Fast](https://wandb.ai/pommedeterresautee/speed_training/reports/Train-HuggingFace-Models-Twice-As-Fast--VmlldzoxMDgzOTI?accessToken=63bnbe9t05wcd81e50w5xqwh53mstg2qn3wkptlkjvwuxqg1e04qiqas4sz5fkx0) [![GitHub stars](github.svg)](https://gist.github.com/pommedeterresautee/1a334b665710bec9bb65965f662c94c8) | This reports summarizes our 14 experiments + 5 reproducibility experiments regarding 2+1 optimizations to reduce training time. | [Michaël Benesty](https://wandb.ai/pommedeterresautee) |
| [Distilling Knowledge in Neural Networks](https://wandb.ai/authors/knowledge-distillation/reports/Distilling-Knowledge-in-Neural-Networks--VmlldzoyMjkxODk?accessToken=4ccoqm9jkuyyhokosgzsuqo5eiwy20ws9q90a0005wpa5a6aij2porlzq65ecxj1) [![GitHub stars](github.svg)](https://github.com/sayakpaul/Knowledge-Distillation-in-Keras) | This report discusses the compelling model optimization technique - knowledge distillation with code walkthroughs in TensorFlow. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Using SimpleTransformers for Common NLP Applications](https://wandb.ai/cayush/simpletransformers/reports/Using-SimpleTransformers-for-Common-NLP-Applications--Vmlldzo4Njk2NA?accessToken=g5t96oetjooe6ww8k9scu09yuteb488yk7pg77s7w83eaimzj4ikkrmemkxt0bs3) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oXROllqMqVvBFcPgTKJRboTq96uWuqSz) | Explore Language Modeling, Named Entity Recognition, Question Answering with the SimpleTransformer library. | [Ayush Chaurasia](https://wandb.ai/cayush) |
| [SimpleTransformers: Transformers Made Easy](https://wandb.ai/wandb/gallery/reports/SimpleTransformers-Transformers-Made-Easy--VmlldzoyNDQzNTg?accessToken=aakdmyety6dd614otlk7r0vt6dunjd2t82rqo6wig57aea4rqjac7b67i0oyd2kj) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1_VFmRNFZIWFstAJUCwN_X-OylH5Hers1?usp=sharing) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1mcS-q1bwGxULd4bFDMB-Pc5IchTpOSBG?usp=sharing) | Simple Transformers removes complexity and lets you get down to what matters – model training and experimenting with the Transformer model architectures. | [Ayush Thakur](https://wandb.ai/ayush-thakur) |
| [Sentence Classification With Huggingface BERT and W&B](https://wandb.ai/cayush/bert-finetuning/reports/Sentence-Classification-With-Huggingface-BERT-and-W-B--Vmlldzo4MDMwNA?accessToken=6gw71oq2savete8we9zuhe8anvn8etlqoam3inmi7ktj4x2219ui4uis01lopbzp) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/13ErkLg5FZHIbnUGZRkKlL-9WNCNQPIow) | In this tutorial, we’ll build a near state of the art sentence classifier leveraging the power of recent breakthroughs in the field of Natural Language Processing. | [Ayush Chaurasia](https://wandb.ai/cayush) |
| [3D Image Inpainting](https://wandb.ai/authors/3D-Inpainting/reports/3D-Image-Inpainting--VmlldzoxNzIwNTY?accessToken=lc1w9ogvpjk50m0wpc8ih43bb56pmlhrx6a1jv2y5nced1e3kahahddu0foq0d6o) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1yNkew-QUtVQPG8PbwWWMLKmnVlLOIfTs?usp=sharing) | A novel way to convert a single RGB-D image into a 3D image. | [Ayush Thakur](https://wandb.ai/ayush-thakur) |
| [Unsupervised Visual Representation Learning with SwAV](https://app.wandb.ai/authors/swav-tf/reports/Unsupervised-Visual-Representation-Learning-with-SwAV--VmlldzoyMjg3Mzg?accessToken=wz39kebuhhgqlpukcswjazz4z5xsqajzm9hjsdlsq1n7inc8mucr2u5ol861z871) [![GitHub stars](github.svg)](https://github.com/ayulockin/SwAV-TF) | In this report, we explore the SwAV framework, as presented in the paper "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments" by Caron et al. SwAV is currently the SoTA in self-supervised learning for visual recognition. We also address common problems in existing self-supervised methods. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) and [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [DeepFaceDrawing: An Overview](https://app.wandb.ai/authors/deepfacedrawing/reports/DeepFaceDrawing-An-Overview--VmlldzoyMjgxNzM?accessToken=tyl772tehqawo0kgw543p1k9j0ks54f6ig7wxp215p2vs1fdp4zd9n8fn0ido1l7) [![GitHub stars](github.svg)](http://geometrylearning.com/DeepFaceDrawing/) | This is an overview report to break down the key components of DeepFaceDrawing | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Tips for Kagglers From Winning a Solo Silver Medal](https://app.wandb.ai/dalmiaman/melanoma-classification/reports/Tips-for-Kagglers-From-Winning-a-Solo-Silver-Medal--VmlldzoyMjMxMDY?accessToken=ivfkfzh1iyzzunpo7sb122dd3vj0m3462uzqvtl7fu7oodym4lyierewihkk9xz4) | How I got started with the competition, my struggles, journey to the final solution and everything I learned in between. | [Aman Dalmia](https://app.wandb.ai/dalmiaman) |
| [Part 2 – Comparing Message Passing Based GNN Architectures](https://app.wandb.ai/yashkotadia/benchmarking-gnns/reports/Part-2-Comparing-Message-Passing-Based-GNN-Architectures--VmlldzoyMTk4OTA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1mLPjOBRjh60UtBY3vymnihLQOkerZn35?usp=sharing) | In this report, we shall review various message-passing based GNN architectures and compare them using Sweeps by Weights and Biases. | [Yash Kotadia](https://app.wandb.ai/yashkotadia) |
| [Part 1 – Introduction to Graph Neural Networks with GatedGCN](https://app.wandb.ai/yashkotadia/gatedgcn-pattern/reports/Part-1-Introduction-to-Graph-Neural-Networks-with-GatedGCN--VmlldzoyMDg4MjA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TRdi2TspTRDTWqlgopzPabS7lQsU1K24) | This report summarizes the need for Graph Neural Networks and analyzes one particular architecture – the Gated Graph Convolutional Network. | [Yash Kotadia](https://app.wandb.ai/yashkotadia) |
| [An Introduction to Adversarial Examples in Deep Learning](https://app.wandb.ai/authors/adv-dl/reports/An-Introduction-to-Adversarial-Examples-in-Deep-Learning--VmlldzoyMTQwODM) [![GitHub stars](github.svg)](https://github.com/sayakpaul/Image-Adversaries-101) | This report provides an intuitive introduction to adversarial examples, discusses a wide variety of different adversarial attacks and, most notably, provides advice on defending against them. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Text Recognition with CRNN-CTC Network](https://app.wandb.ai/authors/text-recognition-crnn-ctc/reports/Text-Recognition-with-CRNN-CTC-Network--VmlldzoxNTI5NDI) [![GitHub stars](github.svg)](https://github.com/rajesh-bhat/spark-ai-summit-2020-text-extraction/blob/master/CRNN_CTC_wandb.ipynb) | This report explains how to detect & recognize text from images. | [Rajesh Shreedhar Bhat](https://app.wandb.ai/rbhat) |
| [Visualize Scikit Models](https://app.wandb.ai/lavanyashukla/visualize-sklearn/reports/Visualize-Scikit-Models--Vmlldzo0ODIzNg) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1j_4UQTT0Lib8ueAU5zXECxesCj_ofjw7) | Visualize your scikit-learn model's performance with just a few lines of code | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla) |
| [DeOldify](https://app.wandb.ai/borisd13/DeOldify/reports/DeOldify--Vmlldzo0NDU3OA) [![GitHub stars](github.svg)](https://github.com/jantic/DeOldify) | Understand how the DeOldify model works, reproduce and visualize the results obtained by the author. | [Boris Dayma](https://app.wandb.ai/borisd13) |
| [HuggingTweets - Train a model to generate tweets](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb) | In this project, we fine-tune a pre-trained transformer on tweets using HuggingFace Transformers – a popular library with pre-trained architectures and frameworks for NLP. | [Boris Dayma](https://app.wandb.ai/borisd13) |
| [Organize Your Machine Learning Pipelines with Artifacts](https://app.wandb.ai/authors/artifact-workplace-safety/reports/Organize-Your-Machine-Learning-Pipelines-with-Artifacts--VmlldzoxODQwNTY) [![GitHub stars](github.svg)](https://github.com/AyushExel/workplace-safety-app) | In this report, we will show you how to use W&B Artifacts to store and keep track of datasets, models, and evaluation results across machine learning pipelines. | [Ayush Chaurasia](https://app.wandb.ai/cayush) |
| [Weights & Biases and Ray Tune: Distributed hyperparameter optimization at scale](https://app.wandb.ai/authors/RayTune-dcgan/reports/Weights-Biases-and-Ray-Tune-Distributed-hyperparameter-optimization-at-scale--VmlldzoyMDEwNDY) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1mK2CHV_43FwDveEHl5OUJ3cM1PwzCIZb?usp=sharing) | How to use Ray Tune with W&B to run an effective distributed hyperparameter optimization pipeline at scale. | [Ayush Chaurasia](https://app.wandb.ai/cayush) and [Lavanya Shukla](https://app.wandb.ai/lavanyashukla)
| [Towards Representation Learning for an Image Retrieval Task](https://app.wandb.ai/authors/image-retrieval/reports/Towards-Representation-Learning-for-an-Image-Retrieval-Task--VmlldzoxOTY4MDI) [![GitHub stars](github.svg)](https://github.com/ariG23498/ImageRetrieval) | This report explains self-supervised and regularized supervised image retrieval with the help of the latent space of an autoencoder. | [Aritra Roy Gosthipaty](https://app.wandb.ai/arig23498) and [Souradip Chakraborty](https://app.wandb.ai/souradip)
| [Build the World's Open Hedge Fund by Modeling the Stock Market](https://app.wandb.ai/carlolepelaars/numerai_tutorial/reports/Build-the-World-s-Open-Hedge-Fund-by-Modeling-the-Stock-Market--VmlldzoxODU0NTQ) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/carlolepelaars/how-to-get-started-with-numerai-w-b) | In this report, we show you how to get started with Numerai, a crowdsourced AI hedge fund and compete on the hardest data science tournament on the planet using Weights & Biases. | [Carlo Lepelaars](https://app.wandb.ai/carlolepelaars) |
| [Understanding the Effectivity of Ensembles in Deep Learning](https://app.wandb.ai/authors/loss-landscape/reports/Understanding-the-Effectivity-of-Ensembles-in-Deep-Learning--VmlldzoxODAxNjA) [![GitHub stars](github.svg)](https://github.com/ayulockin/LossLandscape) | The report explores the ideas presented in Deep Ensembles: A Loss Landscape Perspective by Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) and [Sayak Paul](https://app.wandb.ai/sayakpaul)|
| [Plunging into Model Pruning in Deep Learning](https://app.wandb.ai/authors/pruning/reports/Plunging-into-Model-Pruning-in-Deep-Learning--VmlldzoxMzcyMDg) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/sayakpaul/Adventures-in-TensorFlow-Lite/blob/master/Model_Pruning_in_Deep_Learning_with_tfmot.ipynb)| This report discusses pruning techniques in the context of deep learning. |[Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Visualizing Confusion Matrices with W&B](https://app.wandb.ai/mathisfederico/wandb_features/reports/Visualizing-Confusion-Matrices-with-W%26B--VmlldzoxMzE5ODk) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1k89TDv8ybckgfVByUIhY6peBjtNGBH-k?usp=sharing) | Using Keras with Weights & Biases, plot a confusion matrix at every step of model training and see where your algorithm is wrong. | [Mathïs Fédérico](https://app.wandb.ai/mathisfederico) |
| [Experiments with OpenAI Jukebox](https://app.wandb.ai/authors/openai-jukebox/reports/Experiments-with-OpenAI-Jukebox--VmlldzoxMzQwODg) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1soLU2LZ5QZj8crNWYq0mRp_BwFFa49TH?usp=sharing) | Exploring generative models that create music based on raw audio. | [Ishaan Malhi](https://app.wandb.ai/ishaan-malhi) |
| [The Power of Random Features of a CNN](https://app.wandb.ai/sayakpaul/training-bn-only/reports/The-Power-of-Random-Features-of-a-CNN--VmlldzoxMTIxODA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/sayakpaul/Training-BatchNorm-and-Only-BatchNorm/) |This report presents a number of experiments based on the ideas shown in https://arxiv.org/abs/2003.00152 by Frankle et al. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [The Al-Dente Neural Network: Part I](https://app.wandb.ai/sairam6087/al-dente-nn/reports/The-Al-Dente-Neural-Network%3A-Part-I--VmlldzoxMTE5ODc) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oYQ7WX9CV3sTZ31Csp8JghUxmAF_Ozro) | Much like making pasta, training a neural network is easy to learn but takes a lifetime to master. What follows is probably the best recipe to make your own Al-Dente Neural Net, courtesy of Andrej Karpathy. | [Sairam Sundaresan](https://app.wandb.ai/sairam6087) |
| [A Comparative Study of Activation Functions](https://app.wandb.ai/shweta/Activation%20Functions/reports/A-Comparative-Study-of-Activation-Functions--VmlldzoxMDQwOTQ) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1LYtz-9nWWXYN8anEqLmTiXGR58KOtBah?usp=sharing) | Walking through different activation functions and comparing their performance. | [Sweta Shaw](https://app.wandb.ai/shweta) |
| [Generating Digital Painting Lighting Effects via RGB-space Geometry](https://app.wandb.ai/ayush-thakur/paintlight/reports/Generating-Digital-Painting-Lighting-Effects-via-RGB-space-Geometry--VmlldzoxMTA2Mjg) [![GitHub stars](github.svg)](https://github.com/lllyasviel/PaintingLight) | Exploring the paper "Generating Digital Painting Lighting Effects via RGB-space Geometry" in which the authors propose an image processing algorithm to generate digital painting lighting effects from a single image. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Two Shots to Green Screen: Collage with Deep Learning](https://app.wandb.ai/stacey/greenscreen/reports/Two-Shots-to-Green-Screen%3A-Collage-with-Deep-Learning--VmlldzoxMDc4MjY) [![GitHub stars](github.svg)](https://github.com/senguptaumd/Background-Matting)| Train a deep net to extract foreground and background in natural images and videos | [Stacey Svetlichnaya](https://app.wandb.ai/stacey)|
| [A Step by Step Guide to Tracking Hugging Face Model Performance](https://app.wandb.ai/jxmorris12/huggingface-demo/reports/A-Step-by-Step-Guide-to-Tracking-Hugging-Face-Model-Performance--VmlldzoxMDE2MTU) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1NEiqNPhiouu2pPwDAVeFoN4-vTYMz9F8?usp=sharing) | A quick tutorial for training NLP models with HuggingFace and & visualizing their performance with Weights & Biases | [Jack Morris](https://app.wandb.ai/jxmorris12) |
| [A Tale of Model Quantization in TF Lite](https://app.wandb.ai/sayakpaul/tale-of-quantization/reports/A-Tale-of-Model-Quantization-in-TF-Lite--Vmlldzo5MzQwMA) [![GitHub stars](github.svg)](https://github.com/sayakpaul/Adventures-in-TensorFlow-Lite) | Model optimization strategies and quantization techniques to help deploy machine learning models in resource constrained environments. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Drought Watch Benchmark Progress](https://app.wandb.ai/stacey/droughtwatch/reports/Drought-Watch-Benchmark-Progress--Vmlldzo3ODQ3OQ) [![GitHub stars](github.svg)](https://github.com/wandb/droughtwatch) | Developing the baseline and exploring submissions to the Drought Watch benchmark | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Who is Them? Text Disambiguation with Transformers](https://app.wandb.ai/stacey/winograd/reports/Who-is-Them%3F-Text-Disambiguation-with-Transformers--VmlldzoxMDU1NTc) [![GitHub stars](github.svg)](https://github.com/huggingface/transformers/tree/master/examples/text-classification) |Using HuggingFace to explore models for natural language understanding | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Lightning Kitti](https://app.wandb.ai/borisd13/lightning-kitti/reports/Lightning-Kitti--Vmlldzo3MTcyMw) [![GitHub stars](github.svg)](https://github.com/borisdayma/lightning-kitti) | Semantic segmentation on Kitti dataset with Pytorch-Lightning| [Boris Dayma](https://app.wandb.ai/borisd13) |
| [Interpretability in Deep Learning with W&B - CAM and GradCAM](https://app.wandb.ai/ayush-thakur/interpretability/reports/Interpretability-in-Deep-Learning-with-W%26B-CAM-and-GradCAM--Vmlldzo5MTIyNw) [![GitHub stars](github.svg)](https://github.com/ayulockin/interpretabilitycnn/) | This report will review how Grad-CAM counters the common criticism that neural networks are not interpretable. We'll review feature visualization, class activation maps and implement a custom callback that you can use in your own projects. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur)|
| [Adversarial Policies in Multi-Agent Settings](https://app.wandb.ai/stacey/aprl/reports/Adversarial-Policies-in-Multi-Agent-Settings--VmlldzoxMDEyNzE) [![GitHub stars](github.svg)](https://github.com/HumanCompatibleAI/adversarial-policies) | One way to win is not to play the game | [Stacey Svetlichnaya](https://app.wandb.ai/stacey)|
| [Bounding Boxes for Object Detection](https://app.wandb.ai/stacey/yolo-drive/reports/Bounding-Boxes-for-Object-Detection--Vmlldzo4Nzg4MQ) | How to log and explore bounding boxes | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Deep Q Networks with the Cartpole Environment](https://app.wandb.ai/safijari/dqn-tutorial/reports/Deep-Q-Networks-with-the-Cartpole-Environment--Vmlldzo4MDc2MQ) | A brief explanation of the DQN algorithm for reinforcement learning, focusing on the Cartpole-v1 environment from OpenAI gym. | [Jari](https://app.wandb.ai/safijari)|
| [Using simpleTransformer on common NLP applications](https://app.wandb.ai/cayush/simpletransformers/reports/Using-simpleTransformer-on-common-NLP-applications---Vmlldzo4Njk2NA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oXROllqMqVvBFcPgTKJRboTq96uWuqSz) | Explore Language Modeling, Named Entity Recognition, Question Answering with distilbert from the simpleTransformer library. | [Ayush Chaurasia](https://app.wandb.ai/cayush)|
| [Transfer Learning with EfficientNet family of models](https://app.wandb.ai/sayakpaul/efficientnet-tl/reports/Transfer-Learning-with-EfficientNet-family-of-models--Vmlldzo4OTg1Nw) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UXnXGGoHVceDi0xtLxqUO6iUlYs8_vEs) | Learn to use the EfficientNet family of models for transfer learning in TensorFlow using TFHub. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Automate Kaggle model training with Skorch and W&B](https://app.wandb.ai/cayush/uncategorized/reports/Automate-Kaggle-model-training-with-Skorch-and-W%26B--Vmlldzo4NTQ1NQ) [![GitHub stars](github.svg)](https://github.com/AyushExel/skorchxW-B) | Skorch combines the simplicity of scikit, with the power of pytorch and makes for a great framework to use in Kaggle competitions | [Ayush Chaurasia](https://app.wandb.ai/cayush) |
| [EvoNorm layers in TensorFlow 2](https://app.wandb.ai/sayakpaul/EvoNorm-TensorFlow2/reports/EvoNorm-layers-in-TensorFlow-2--Vmlldzo4Mzk3MQ) [![GitHub stars](github.svg)](https://github.com/sayakpaul/EvoNorms-in-TensorFlow-2) | Experimental summary of my implementation of EvoNorm layers proposed in https://arxiv.org/pdf/2004.02967.pdf. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [When Inception-ResNet-V2 is too slow](https://app.wandb.ai/stacey/estuary/reports/When-Inception-ResNet-V2-is-too-slow--Vmlldzo3MDcxMA) | Some versions of Inception parallelize better than others | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Using W&B in a Kaggle Competition](https://app.wandb.ai/cayush/kaggle-fraud-detection/reports/Using-W%26B-in-a-Kaggle-Competition--Vmlldzo3MDY2NA) [![GitHub stars](github.svg)](https://github.com/AyushExel/FraudDetectionIEEE) | In this tutorial, we’ll see how you can use W&B in a Kaggle competition. We'll also see how W&B's Scikit-learn integration enables you to visualize performance metrics for your model with a single line of code. Finally, we'll run a hyperparameter sweep to pick the best model. | [Ayush Chaurasia](https://app.wandb.ai/cayush) |
| [Image Masks for Semantic Segmentation](https://app.wandb.ai/stacey/deep-drive/reports/Image-Masks-for-Semantic-Segmentation--Vmlldzo4MTUwMw) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SOVl3EvW82Q4QKJXX6JtHye4wFix_P4J) | How to log and explore semantic segmentation masks| [Stacey Svetlichnaya](https://app.wandb.ai/stacey)|
| [COVID-19 research using PyTorch and W&B](https://app.wandb.ai/cayush/covid-19-scans/reports/COVID-19-research-using-PyTorch-and-W%26B--Vmlldzo2OTQ5OA) [![GitHub stars](github.svg)](https://github.com/AyushExel/COVID19WB/blob/master/main.ipynb) | How to train T5 on SQUAD with Transformers and Nlp | [Ayush Chaurasia](https://app.wandb.ai/cayush) |
| [Video to 3D: Depth Perception for Self-Driving Cars](https://app.wandb.ai/stacey/sfmlearner/reports/Video-to-3D%3A-Depth-Perception-for-Self-Driving-Cars--Vmlldzo2Nzg2Nw) | Unsupervised learning of depth perception from dashboard cameras | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [The View from the Driver's Seat](https://app.wandb.ai/stacey/deep-drive/reports/The-View-from-the-Driver's-Seat--Vmlldzo1MTg5NQ) | Semantic segmentation for scene parsing on Berkeley Deep Drive 100K| [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Meaning and Noise in Hyperparameter Search](https://app.wandb.ai/stacey/pytorch_intro/reports/Meaning-and-Noise-in-Hyperparameter-Search--Vmlldzo0Mzk5MQ) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb#scrollTo=QLGiFCDqvuil) | How do we distinguish signal from pareidolia (imaginary patterns)? | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Kaggle Starter Kernel - Jigsaw Multilingual Toxic Comment Classification](https://app.wandb.ai/sayakpaul/jigsaw-toxic/reports/Kaggle-Starter-Kernel-Jigsaw-Multilingual-Toxic-Comment-Classification--Vmlldzo3NjE1MQ) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/spsayakpaul/jigsaw-multilingual-toxic-comment-classification) | This report presents a comparison between three models, trained to compete on Kaggle's [Jigsaw Multilingual Toxic Comment Classification](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification). | [Sayak Paul](https://app.wandb.ai/sayakpaul)|
| [Sentence classification with Huggingface BERT and W&B](https://app.wandb.ai/cayush/bert-finetuning/reports/Sentence-classification-with-Huggingface-BERT-and-W%26B--Vmlldzo4MDMwNA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/13ErkLg5FZHIbnUGZRkKlL-9WNCNQPIow) | How to train T5 on SQUAD with Transformers and Nlp | [Ayush Chaurasia](https://app.wandb.ai/cayush)|
| [Visualizing and Debugging Neural Networks with PyTorch and W&B](https://app.wandb.ai/ayush-thakur/debug-neural-nets/reports/Visualizing-and-Debugging-Neural-Networks-with-PyTorch-and-W%26B--Vmlldzo2OTUzNA) [![GitHub stars](github.svg)](https://github.com/ayulockin/debugNNwithWandB) | In this post, we’ll see what makes a neural network underperform and ways we can debug this by visualizing the gradients and other parameters associated with model training. We’ll also discuss the problem of vanishing and exploding gradients and methods to overcome them. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Track Model Performance](https://app.wandb.ai/lavanyashukla/visualize-models/reports/Track-Model-Performance--Vmlldzo1NTk2MA)[![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/lavanyashukla01/better-models-faster-with-weights-biases) | In this report, I'll show you show you can visualize any model's performance with Weights & Biases. We'll see how to log metrics from vanilla for loops, boosting models (xgboost & lightgbm), sklearn and neural networks. | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla)|
| [Log ROC, PR curves and Confusion Matrices with W&B](https://app.wandb.ai/lavanyashukla/vega-plots/reports/Log-ROC%2C-PR-curves-and-Confusion-Matrices-with-W%26B--Vmlldzo3NzQ3MQ) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1959tqn82yyjanOOZmCm4tDUI_iWSFe-W) | You can now log precision recall and ROC curves, and confusion matrices natively using Weights & Biases. You can also use our heatmaps to create attention maps. | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla) |
| [Visualize models in TensorBoard with Weights and Biases](https://app.wandb.ai/sayakpaul/tensorboard-integration-partII/reports/Visualize-models-in-TensorBoard-with-Weights-and-Biases--Vmlldzo2MzE2Mg) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/sayakpaul/5b31ed03725cc6ae2af41848d4acee45/demo_tensorboard.ipynb) | In this article, we are going see how to spin up and host a TensorBoard instance online with Weights and Biases. We'll end with visualizing a confusion matrix in TensorBoard. | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla) |
| [Visualizing and Debugging Neural Networks with PyTorch and W&B](https://app.wandb.ai/nbaryd/Corona-Virus/reports/Visualizing-Molecular-Structure-with-Weights-%26-Biases--Vmlldzo2ODA0Mw) |In this post I'll show you how to use wandb.Molecule, to visualize molecular data with Weights and Biases. | [Nicholas Bardy](https://app.wandb.ai/nbaryd) |
| [Visualize Model Predictions](https://app.wandb.ai/lavanyashukla/visualize-predictions/reports/Visualize-Model-Predictions--Vmlldzo1NjM4OA) | In this report, I'll show you how to visualize a model's predictions with Weights & Biases – images, videos, audio, tables, HTML, metrics, plots, 3d objects and point clouds. | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla) |
| [Use Pytorch Lightning with Weights & Biases](https://app.wandb.ai/cayush/pytorchlightning/reports/Use-Pytorch-Lightning-with-Weights-%26-Biases--Vmlldzo2NjQ1Mw) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GHWwfzAsWx_Q1paw73hngAvA7-U9QHi-?usp=sharing) | PyTorch Lightning lets you decouple the science code from engineering code. Try this quick tutorial to visualize Lightning models and optimize hyperparameters with an easy Weights & Biases integration. | [Ayush Chaurasia](https://app.wandb.ai/cayush) |
| [Evaluating the Impact of Sequence Convolutions and Embeddings on Protein Structure Prediction](https://app.wandb.ai/koes-group/protein-transformer/reports/Evaluating-the-Impact-of-Sequence-Convolutions-and-Embeddings-on-Protein-Structure-Prediction--Vmlldzo2OTg4Nw) | A vignette on recent work using deep learning for protein structure prediction. March 26, 2020.| [Jonathan King](https://app.wandb.ai/jonathanking) |
| [Towards Deep Generative Modeling with W&B](https://app.wandb.ai/ayush-thakur/keras-gan/reports/Towards-Deep-Generative-Modeling-with-W%26B--Vmlldzo4MDI4Mw) [![GitHub stars](github.svg)](https://github.com/ayulockin/deepgenerativemodeling) | In this report, we will learn about the evolution of generative modeling. We'll start with Autoencoders and Variational Autoencoders and then dive into Generative Adversarial Modeling.| [Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Exploring ResNets With W&B](https://app.wandb.ai/cayush/resnet/reports/Exploring-ResNets-With-W%26B--Vmlldzo2NDc4NA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1s62r_nK4RNd3PIyrAd2H72gvrMElX3hN) | Post by Ayush Chaurasia | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla)|
| [NeRF – Representing Scenes as Neural Radiance Fields for View Synthesis](https://app.wandb.ai/sweep/nerf/reports/NeRF-%E2%80%93-Representing-Scenes-as-Neural-Radiance-Fields-for-View-Synthesis--Vmlldzo3ODIzMA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1SNP7ioYd3LHj2HmNDJIG2N7rPh1IiDbm?usp=sharing) | In the [Representing Scenes as Neural Radiance Fields for View Synthesis paper](https://arxiv.org/abs/2003.08934), the authors present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. | [Lavanya Shukla](https://app.wandb.ai/lavanyashukla) |
| [How Efficient is EfficientNet?](https://app.wandb.ai/ajayuppili/efficientnet/reports/How-Efficient-is-EfficientNet%3F--Vmlldzo4NTk5MQ) | Evaluating the EfficientNet Family on a Smaller ImageNet-like Dataset | [Ajay Arasanipalai](https://app.wandb.ai/ajayuppili) |
| [Distributed training in tf.keras with W&B](https://app.wandb.ai/sayakpaul/tensorflow-multi-gpu-dist/reports/Distributed-training-in-tf.keras-with-W%26B--Vmlldzo3NzUyNA) [![GitHub stars](github.svg)](https://github.com/sayakpaul/tf.keras-Distributed-Training) | Explore the ways to distribute your training workloads with minimal code changes and analyze system metrics with Weights and Biases. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Reproducible Models with W&B](https://app.wandb.ai/sayakpaul/reproducible-ml/reports/Reproducible-Models-with-W%26B--Vmlldzo3ODMxNQ) [![GitHub stars](github.svg)](https://github.com/sayakpaul/Reproducibility-in-tf.keras-with-wandb) | Discover simple techniques to make your ML experiments as reproducible as possible. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Effects of Weight Initialization on Neural Networks](https://app.wandb.ai/sayakpaul/weight-initialization-tb/reports/Effects-of-Weight-Initialization-on-Neural-Networks--Vmlldzo2ODY0NA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Faqy6QaOkG-5G31MrYmvcmm079XbfKSv) | In this article, we’ll review and compare a plethora of weight initialization methods for neural nets. We will also outline a simple recipe for initializing the weights in a neural net. | [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [An Introduction to Image Inpainting using Deep Learning](https://app.wandb.ai/ayush-thakur/image-impainting/reports/An-Introduction-to-Image-Inpainting-using-Deep-Learning--Vmlldzo3NDU0Nw) [![GitHub stars](github.svg)](https://github.com/ayulockin/deepimageinpainting) | In this report, we are going to learn how to do “image inpainting”, i.e. fill in missing parts of images precisely using deep learning. | [Ayush Thakur](https://app.wandb.ai/ayush-thakur) and [Sayak Paul](https://app.wandb.ai/sayakpaul) |
| [Distributed Training](https://app.wandb.ai/stacey/estuary/reports/Distributed-Training--Vmlldzo1MjEw) | Getting started with distributed training in Keras | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Curriculum Learning in Nature](https://app.wandb.ai/stacey/keras_finetune/reports/Curriculum-Learning-in-Nature--Vmlldzo1MjcxNw) | Applying human learning strategies to neural nets on iNaturalist 2017 | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Fashion MNIST](https://app.wandb.ai/stacey/fmnist/reports/Fashion-MNIST--Vmlldzo1MjU2Mg) | Explore various hyperparameters of a CNN trained on Fashion MNIST to identify 10 types of clothing| [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Classify the Natural World](https://app.wandb.ai/stacey/curr_learn/reports/Classify-the-Natural-World--Vmlldzo1MjY4Ng) | Training and fine-tuning convolutional networks to identify species beyond ImageNet | [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Colorizing Black and White Images](https://app.wandb.ai/borisd13/colorizer/reports/Colorizing-Black-and-White-Images--VmlldzozODQ4MQ) |How can we add realistic color to black & white images? Explore the effect of up-convolutions, weight decay, and deeper architectures. | [Nicholas Bardy](https://app.wandb.ai/nbaryd) |
| [Text Generation with Sequence Models](https://app.wandb.ai/borisd13/char-RNN/reports/Text-Generation-with-Sequence-Models--VmlldzoxMDk2Ng) | Explore network architectures and training settings for character-based text generation. Compare RNNs, GRUs, and LSTMS, with different depths, layer widths, and dropout. Also consider the training data length, sequence length, and number of sequences per batch. | [Carey](https://app.wandb.ai/carey) |
| [RNNs for Video Understanding](https://app.wandb.ai/rchavezj/label_yt_videos/reports/RNNs-for-Video-Understanding--Vmlldzo0MzY4MA) | Comparing various recurrent models in Pytorch on YouTube videos | [rchavezj](https://app.wandb.ai/rchavezj) |
| [FastText Nanobot for the Transformer Age](https://app.wandb.ai/stacey/fasttext/reports/FastText-Nanobot-for-the-Transformer-Age--Vmlldzo1MjY3Mw) | Integrate FastText with W&B to visualize incredibly efficient natural language processing| [Stacey Svetlichnaya](https://app.wandb.ai/stacey) |
| [Dropout in PyTorch – An Example](https://app.wandb.ai/authors/ayusht/reports/Dropout-in-PyTorch-An-Example--VmlldzoxNTgwOTE) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1uX4QhQ4levE1FMvFRlqzvYOeK-MBqtcu?usp=sharing) | Regularize your PyTorch model with Dropout| [Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Compare & monitor fastai2 models](https://app.wandb.ai/borisd13/demo_config/reports/Compare-monitor-fastai2-models--Vmlldzo4MzAyNA) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/borisdayma/c3f5576b68c4ec422c41bca304a860ba/fastai2-demo.ipynb) | Exploring generative models that create music based on raw audio. | [Boris Dayma](https://app.wandb.ai/borisd13) |
| [Generate Meaningful Captions for Images with Attention Models](https://app.wandb.ai/authors/image-captioning/reports/Generate-Meaningful-Captions-for-Images-with-Attention-Models--VmlldzoxNzg0ODA) [![GitHub stars](github.svg)](https://github.com/rajesh-bhat/dhs_summit_2019_image_captioning)| Image captioning has many use cases that include generating captions for Google image search and live video surveillance as well as helping visually impaired people to get information about their surroundings. | [Rajesh Shreedhar Bhat](https://app.wandb.ai/rbhat) and [Souradip Chakraborty](https://app.wandb.ai/souradip) |
| [Train HuggingFace models twice as fast](https://app.wandb.ai/pommedeterresautee/speed_training/reports/Train-HuggingFace-models-twice-as-fast--VmlldzoxMDgzOTI) [![GitHub stars](github.svg)](https://gist.github.com/pommedeterresautee/1a334b665710bec9bb65965f662c94c8)| This reports summarizes our 14 experiments + 5 reproducibility experiments regarding 2+1 optimizations to reduce training time. | [Michaël Benesty](https://app.wandb.ai/pommedeterresautee) |
| [Build the world's open hedge fund by modeling the stock market.](https://app.wandb.ai/carlolepelaars/numerai_tutorial/reports/Build-the-world-s-open-hedge-fund-by-modeling-the-stock-market---VmlldzoxODU0NTQ) [![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/carlolepelaars/how-to-get-started-with-numerai)| In this report, we show you how to get started with Numerai, a crowdsourced AI hedge fund and compete on the hardest data science tournament on the planet using Weights & Biases. |[Carlo Lepelaars](https://app.wandb.ai/carlolepelaars) |
| [Use GPUs with Keras](https://app.wandb.ai/authors/ayusht/reports/Use-GPUs-with-Keras--VmlldzoxNjEyNjE) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1BPO5n8wkcMXDlijasBbfXpI7HuBWDkUb?usp=sharing)| A short tutorial on using GPUs for your deep learning models with Keras |[Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Implementing and tracking the performance of a CNN in Pytorch - An Example](https://app.wandb.ai/authors/ayusht/reports/Implementing-and-tracking-the-performance-of-a-CNN-in-Pytorch-An-Example--VmlldzoxNjEyMDU) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qVGzdLCrF6ZSKn637i8gsj7bjiKqYE6v?usp=sharing)| A guide to implementing and tracking the performance of a Convolutional Neural Network in Pytorch. |[Ayush Thakur](https://app.wandb.ai/ayush-thakur) |
| [Measuring Mode Collapse in GANs](https://app.wandb.ai/authors/DCGAN-ndb-test/reports/Measuring-Mode-Collapse-in-GANs--VmlldzoxNzg5MDk) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1fGrFl5UzYc3upShr25Hv8VfqyzhZOPTM?usp=sharing)| Evaluate and quantitatively measure the GAN failure case of mode collapse - when the model fails to generate diverse enough outputs. |[Kevin Shen](https://app.wandb.ai/kshen) |