Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wandb/wandb

The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.
https://github.com/wandb/wandb

ai collaboration data-science data-versioning deep-learning experiment-track hyperparameter-optimization hyperparameter-search hyperparameter-tuning jax keras machine-learning ml-platform mlops model-versioning pytorch reinforcement-learning reproducibility tensorflow

Last synced: about 21 hours ago
JSON representation

The AI developer platform. Use Weights & Biases to train and fine-tune models, and manage models from experimentation to production.

Awesome Lists containing this project

README

        


Weights & Biases
Weights & Biases










Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production machine learning models. Get started with W&B today, [sign up for a W&B account!](https://wandb.com?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=readme)


Building an LLM app? Track, debug, evaluate, and monitor LLM apps with [Weave](https://wandb.github.io/weave?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=readme), our new suite of tools for GenAI.

 

# Documentation




Weights and Biases Experiments




Weights and Biases Reports




Weights and Biases Artifacts




Weights and Biases Tables




Weights and Biases Sweeps




Weights and Biases Model Management




Weights and Biases Prompts

See the [W&B Developer Guide](https://docs.wandb.ai/?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) and [API Reference Guide](https://docs.wandb.ai/ref?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=documentation) for a full technical description of the W&B platform.

# Quickstart

Get started with W&B in four steps:

1. First, sign up for a [W&B account](https://wandb.ai/login?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=quickstart).

2. Second, install the W&B SDK with [pip](https://pip.pypa.io/en/stable/). Navigate to your terminal and type the following command:

```bash
pip install wandb
```

3. Third, log into W&B:

```python
wandb.login()
```

4. Use the example code snippet below as a template to integrate W&B to your Python script:

```python
import wandb

# Start a W&B Run with wandb.init
run = wandb.init(project="my_first_project")

# Save model inputs and hyperparameters in a wandb.config object
config = run.config
config.learning_rate = 0.01

# Model training code here ...

# Log metrics over time to visualize performance with wandb.log
for i in range(10):
run.log({"loss": ...})

# Mark the run as finished, and finish uploading all data
run.finish()
```

That's it! Navigate to the W&B App to view a dashboard of your first W&B Experiment. Use the W&B App to compare multiple experiments in a unified place, dive into the results of a single run, and much more!





Example W&B Dashboard that shows Runs from an Experiment.

 

# Integrations

Use your favorite framework with W&B. W&B integrations make it fast and easy to set up experiment tracking and data versioning inside existing projects. For more information on how to integrate W&B with the framework of your choice, see the [Integrations chapter](https://docs.wandb.ai/guides/integrations) in the W&B Developer Guide.

🔥 PyTorch

Call `.watch` and pass in your PyTorch model to automatically log gradients and store the network topology. Next, use `.log` to track other metrics. The following example demonstrates an example of how to do this:

```python
import wandb

# 1. Start a new run
run = wandb.init(project="gpt4")

# 2. Save model inputs and hyperparameters
config = run.config
config.dropout = 0.01

# 3. Log gradients and model parameters
run.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
...
if batch_idx % args.log_interval == 0:
# 4. Log metrics to visualize performance
run.log({"loss": loss})
```

- Run an example [Google Colab Notebook](http://wandb.me/pytorch-colab).
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/pytorch?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch with W&B.
- Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Pytorch--VmlldzoyMTEwNzM?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).

🌊 TensorFlow/Keras
Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.

The following code example demonstrates how your script might look like when you integrate W&B with Keras:

```python
# This script needs these libraries to be installed:
# tensorflow, numpy

import wandb
from wandb.keras import WandbMetricsLogger, WandbModelCheckpoint

import random
import numpy as np
import tensorflow as tf

# Start a run, tracking hyperparameters
run = wandb.init(
# set the wandb project where this run will be logged
project="my-awesome-project",
# track hyperparameters and run metadata with wandb.config
config={
"layer_1": 512,
"activation_1": "relu",
"dropout": random.uniform(0.01, 0.80),
"layer_2": 10,
"activation_2": "softmax",
"optimizer": "sgd",
"loss": "sparse_categorical_crossentropy",
"metric": "accuracy",
"epoch": 8,
"batch_size": 256,
},
)

# [optional] use wandb.config as your config
config = run.config

# get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train, y_train = x_train[::5], y_train[::5]
x_test, y_test = x_test[::20], y_test[::20]
labels = [str(digit) for digit in range(np.max(y_train) + 1)]

# build a model
model = tf.keras.models.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(config.layer_1, activation=config.activation_1),
tf.keras.layers.Dropout(config.dropout),
tf.keras.layers.Dense(config.layer_2, activation=config.activation_2),
]
)

# compile the model
model.compile(optimizer=config.optimizer, loss=config.loss, metrics=[config.metric])

# WandbMetricsLogger will log train and validation metrics to wandb
# WandbModelCheckpoint will upload model checkpoints to wandb
history = model.fit(
x=x_train,
y=y_train,
epochs=config.epoch,
batch_size=config.batch_size,
validation_data=(x_test, y_test),
callbacks=[
WandbMetricsLogger(log_freq=5),
WandbModelCheckpoint("models"),
],
)

# [optional] finish the wandb run, necessary in notebooks
run.finish()
```

Get started integrating your Keras model with W&B today:

- Run an example [Google Colab Notebook](https://wandb.me/intro-keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations)
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/keras?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Keras with W&B.
- Explore [W&B Reports](https://app.wandb.ai/wandb/getting-started/reports/Keras--VmlldzoyMTEwNjQ?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).

🤗 Hugging Face Transformers

Pass `wandb` to the `report_to` argument when you run a script using a Hugging Face Trainer. W&B will automatically log losses,
evaluation metrics, model topology, and gradients.

**Note**: The environment you run your script in must have `wandb` installed.

The following example demonstrates how to integrate W&B with Hugging Face:

```python
# This script needs these libraries to be installed:
# numpy, transformers, datasets

import wandb

import os
import numpy as np
from datasets import load_dataset
from transformers import TrainingArguments, Trainer
from transformers import AutoTokenizer, AutoModelForSequenceClassification

def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)

def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return {"accuracy": np.mean(predictions == labels)}

# download prepare the data
dataset = load_dataset("yelp_review_full")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

small_train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(300))

small_train_dataset = small_train_dataset.map(tokenize_function, batched=True)
small_eval_dataset = small_train_dataset.map(tokenize_function, batched=True)

# download the model
model = AutoModelForSequenceClassification.from_pretrained(
"distilbert-base-uncased", num_labels=5
)

# set the wandb project where this run will be logged
os.environ["WANDB_PROJECT"] = "my-awesome-project"

# save your trained model checkpoint to wandb
os.environ["WANDB_LOG_MODEL"] = "true"

# turn off watch to log faster
os.environ["WANDB_WATCH"] = "false"

# pass "wandb" to the `report_to` parameter to turn on wandb logging
training_args = TrainingArguments(
output_dir="models",
report_to="wandb",
logging_steps=5,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
evaluation_strategy="steps",
eval_steps=20,
max_steps=100,
save_steps=100,
)

# define the trainer and start training
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()

# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
```

- Run an example [Google Colab Notebook](http://wandb.me/hf?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.com/guides/integrations/huggingface?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Hugging Face with W&B.

⚡️ PyTorch Lightning

Build scalable, structured, high-performance PyTorch models with Lightning and log them with W&B.

```python
# This script needs these libraries to be installed:
# torch, torchvision, pytorch_lightning

import wandb

import os
from torch import optim, nn, utils
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor

import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger

class LitAutoEncoder(pl.LightningModule):
def __init__(self, lr=1e-3, inp_size=28, optimizer="Adam"):
super().__init__()

self.encoder = nn.Sequential(
nn.Linear(inp_size * inp_size, 64), nn.ReLU(), nn.Linear(64, 3)
)
self.decoder = nn.Sequential(
nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, inp_size * inp_size)
)
self.lr = lr

# save hyperparameters to self.hparamsm auto-logged by wandb
self.save_hyperparameters()

def training_step(self, batch, batch_idx):
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = nn.functional.mse_loss(x_hat, x)

# log metrics to wandb
self.log("train_loss", loss)
return loss

def configure_optimizers(self):
optimizer = optim.Adam(self.parameters(), lr=self.lr)
return optimizer

# init the autoencoder
autoencoder = LitAutoEncoder(lr=1e-3, inp_size=28)

# setup data
batch_size = 32
dataset = MNIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DataLoader(dataset, shuffle=True)

# initialise the wandb logger and name your wandb project
wandb_logger = WandbLogger(project="my-awesome-project")

# add your batch size to the wandb config
wandb_logger.experiment.config["batch_size"] = batch_size

# pass wandb_logger to the Trainer
trainer = pl.Trainer(limit_train_batches=750, max_epochs=5, logger=wandb_logger)

# train the model
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
```

- Run an example [Google Colab Notebook](http://wandb.me/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/lightning?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate PyTorch Lightning with W&B.

💨 XGBoost
Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.

The following code example demonstrates how your script might look like when you integrate W&B with XGBoost:

```python
# This script needs these libraries to be installed:
# numpy, xgboost

import wandb
from wandb.xgboost import WandbCallback

import numpy as np
import xgboost as xgb

# setup parameters for xgboost
param = {
"objective": "multi:softmax",
"eta": 0.1,
"max_depth": 6,
"nthread": 4,
"num_class": 6,
}

# start a new wandb run to track this script
run = wandb.init(
# set the wandb project where this run will be logged
project="my-awesome-project",
# track hyperparameters and run metadata
config=param,
)

# download data from wandb Artifacts and prep data
run.use_artifact("wandb/intro/dermatology_data:v0", type="dataset").download(".")
data = np.loadtxt(
"./dermatology.data",
delimiter=",",
converters={33: lambda x: int(x == "?"), 34: lambda x: int(x) - 1},
)
sz = data.shape

train = data[: int(sz[0] * 0.7), :]
test = data[int(sz[0] * 0.7) :, :]

train_X = train[:, :33]
train_Y = train[:, 34]

test_X = test[:, :33]
test_Y = test[:, 34]

xg_train = xgb.DMatrix(train_X, label=train_Y)
xg_test = xgb.DMatrix(test_X, label=test_Y)
watchlist = [(xg_train, "train"), (xg_test, "test")]

# add another config to the wandb run
num_round = 5
run.config["num_round"] = 5
run.config["data_shape"] = sz

# pass WandbCallback to the booster to log its configs and metrics
bst = xgb.train(
param, xg_train, num_round, evals=watchlist, callbacks=[WandbCallback()]
)

# get prediction
pred = bst.predict(xg_test)
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]

# log your test metric to wandb
run.summary["Error Rate"] = error_rate

# [optional] finish the wandb run, necessary in notebooks
run.finish()
```

- Run an example [Google Colab Notebook](https://wandb.me/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/xgboost?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate XGBoost with W&B.

🧮 Sci-Kit Learn
Use wandb to visualize and compare your scikit-learn models' performance:

```python
# This script needs these libraries to be installed:
# numpy, sklearn

import wandb
from wandb.sklearn import plot_precision_recall, plot_feature_importances
from wandb.sklearn import plot_class_proportions, plot_learning_curve, plot_roc

import numpy as np
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

# load and process data
wbcd = datasets.load_breast_cancer()
feature_names = wbcd.feature_names
labels = wbcd.target_names

test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(
wbcd.data, wbcd.target, test_size=test_size
)

# train model
model = RandomForestClassifier()
model.fit(X_train, y_train)
model_params = model.get_params()

# get predictions
y_pred = model.predict(X_test)
y_probas = model.predict_proba(X_test)
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]

# start a new wandb run and add your model hyperparameters
run = wandb.init(project="my-awesome-project", config=model_params)

# Add additional configs to wandb
run.config.update(
{
"test_size": test_size,
"train_len": len(X_train),
"test_len": len(X_test),
}
)

# log additional visualisations to wandb
plot_class_proportions(y_train, y_test, labels)
plot_learning_curve(model, X_train, y_train)
plot_roc(y_test, y_probas, labels)
plot_precision_recall(y_test, y_probas, labels)
plot_feature_importances(model)

# [optional] finish the wandb run, necessary in notebooks
run.finish()
```

- Run an example [Google Colab Notebook](https://wandb.me/scikit-colab?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations).
- Read the [Developer Guide](https://docs.wandb.ai/guides/integrations/scikit?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=integrations) for technical details on how to integrate Scikit-Learn with W&B.

 

# W&B Hosting Options

Weights & Biases is available in the cloud or installed on your private infrastructure. Set up a W&B Server in a production environment in one of three ways:

1. [Production Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/self-managed#on-prem-private-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): Set up a production deployment on a private cloud in just a few steps using terraform scripts provided by W&B.
2. [Dedicated Cloud](https://docs.wandb.ai/guides/hosting/hosting-options/wb-managed#dedicated-cloud?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): A managed, dedicated deployment on W&B's single-tenant infrastructure in your choice of cloud region.
3. [On-Prem/Bare Metal](https://docs.wandb.ai/guides/hosting/how-to-guides/bare-metal?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting): W&B supports setting up a production server on most bare metal servers in your on-premise data centers. Quickly get started by running `wandb server` to easily start hosting W&B on your local infrastructure.

See the [Hosting documentation](https://docs.wandb.ai/guides/hosting?utm_source=github&utm_medium=code&utm_campaign=wandb&utm_content=hosting) in the W&B Developer Guide for more information.

 

# Python Version Support

We are committed to supporting our minimum required Python version for *at least* six months after its official end-of-life (EOL) date, as defined by the Python Software Foundation. You can find a list of Python EOL dates [here](https://devguide.python.org/versions/).

When we discontinue support for a Python version, we will increment the library’s minor version number to reflect this change.

 

# Contribution guidelines

Weights & Biases ❤️ open source, and we welcome contributions from the community! See the [Contribution guide](https://github.com/wandb/wandb/blob/main/CONTRIBUTING.md) for more information on the development workflow and the internals of the wandb library. For wandb bugs and feature requests, visit [GitHub Issues](https://github.com/wandb/wandb/issues) or contact [email protected].

 

# W&B Community

Be a part of the growing W&B Community and interact with the W&B team in our [Discord](https://wandb.me/discord). Stay connected with the latest ML updates and tutorials with [W&B Fully Connected](https://wandb.ai/fully-connected).

 

# License

[MIT License](https://github.com/wandb/wandb/blob/main/LICENSE)