Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wandb/wandb-workspaces
Programatically edit the W&B UI
https://github.com/wandb/wandb-workspaces
Last synced: 14 days ago
JSON representation
Programatically edit the W&B UI
- Host: GitHub
- URL: https://github.com/wandb/wandb-workspaces
- Owner: wandb
- License: apache-2.0
- Created: 2024-06-03T14:03:19.000Z (5 months ago)
- Default Branch: main
- Last Pushed: 2024-10-15T01:37:32.000Z (29 days ago)
- Last Synced: 2024-10-29T09:48:54.580Z (15 days ago)
- Language: Python
- Homepage:
- Size: 488 KB
- Stars: 7
- Watchers: 5
- Forks: 1
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Security: SECURITY.md
Awesome Lists containing this project
README
# wandb-workspaces
`wandb-workspaces` is a Python library for programatically working with [Weights & Biases](https://wandb.ai) workspaces and reports.
## Quickstart
### 1. Install
```bash
pip install wandb-workspaces
```OR, you can install this as an extra from the wandb library:
```bash
pip install wandb[workspaces]
```### 2. Create a workspace
```python
import wandb_workspaces.workspaces as wsworkspace = ws.Workspace(
name="Example W&B Workspace",
entity="your-entity",
project="your-project",
sections=[
ws.Section(
name="Validation Metrics",
panels=[
wr.LinePlot(x="Step", y=["val_loss"]),
wr.BarPlot(metrics=["val_accuracy"]),
wr.ScalarChart(metric="f1_score", groupby_aggfunc="mean"),
],
is_open=True,
),
],
).save()
```![image](https://github.com/wandb/wandb-workspaces/assets/15385696/796083f4-2aa6-432f-b585-c04abca9022f)
### 3. Create a report
```python
import wandb_workspaces.reports as wrreport = wr.Report(
entity="your-entity",
project="your-project",
title="Example W&B Report",
blocks=[
wr.H1("This is a heading"),
wr.P("Some amazing insightful text about your project"),
wr.H2(
"This heading is collapsed",
collapsed_blocks=[wr.P("Our model is great!")],
),
wr.PanelGrid(
panels=[
wr.LinePlot(x="Step", y=["val_loss"]),
wr.BarPlot(metrics=["val_accuracy"]),
wr.ScalarChart(metric="f1_score", groupby_aggfunc="mean"),
]
),
],
).save()
```![image](https://github.com/wandb/wandb-workspaces/assets/15385696/25939b7c-1f2c-4df7-9936-692464e6e3fc)
## More examples
See [examples](https://github.com/wandb/wandb-workspaces/tree/main/examples) for more detailed usage.