https://github.com/wandering007/nasnet-pytorch
  
  
    A neat pytorch implementation of nasnet and the ported weights from tensorflow 
    https://github.com/wandering007/nasnet-pytorch
  
nasnet pytorch
        Last synced: 7 months ago 
        JSON representation
    
A neat pytorch implementation of nasnet and the ported weights from tensorflow
- Host: GitHub
 - URL: https://github.com/wandering007/nasnet-pytorch
 - Owner: wandering007
 - License: mit
 - Created: 2018-03-20T12:39:35.000Z (over 7 years ago)
 - Default Branch: master
 - Last Pushed: 2020-12-05T08:57:54.000Z (almost 5 years ago)
 - Last Synced: 2024-08-01T22:50:07.544Z (over 1 year ago)
 - Topics: nasnet, pytorch
 - Language: Python
 - Size: 8.79 KB
 - Stars: 74
 - Watchers: 4
 - Forks: 17
 - Open Issues: 2
 - 
            Metadata Files:
            
- Readme: README.md
 - License: LICENSE
 
 
Awesome Lists containing this project
- awesome-image-classification - unofficial-pytorch : https://github.com/wandering007/nasnet-pytorch
 - awesome-image-classification - unofficial-pytorch : https://github.com/wandering007/nasnet-pytorch
 - awesome-AutoML-and-Lightweight-Models - wandering007/nasnet-pytorch
 
README
          ## A neat pytorch implementation of NASNet
The performance of the ported models on ImageNet (Accuracy):
| Model Checkpoint    | Million Parameters | Val Top-1 | Val Top-5 |
| ------------------- | ------------------ | --------- | --------- |
| NASNet-A_Mobile_224 | 5.3                | 70.2      | 89.4      |
| NASNet-A_large_331  | 88.9               | 82.3      | 96.0      |
The slight performance drop may be caused by the different spatial padding methods between tensorflow and pytorch.
The porting process is done by `tensorflow_dump.py` and `pytorch_load.py`, modified from [Cadene's project](https://github.com/Cadene/tensorflow-model-zoo.torch/tree/master/nasnet). Note that NASNets with the original performance can be found there.
You can evaluate the models by running `imagenet_eval.py`, e.g. evaluate the NASNet-A_Mobile_224 ported model by
```shell
python imagenet_eval.py --nas-type mobile --resume /path/to/modelfile --gpus 0 --data /path/to/imagenet_root_dir
```
The ported model files are provided: [NASNet-A_Mobile_224, NASNet-A_large_331](https://www.dropbox.com/sh/ng93kp7f7ypat73/AABUQhImioJ2saQ3N-qWzrJga?dl=0).
Future work:  
- add drop path for training  
-  more nasnet model settings