Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wang-chen/lgl-action-recognition
Lifelong Graph Learning (CVPR 2022) [Distributed Human Action Recognition]
https://github.com/wang-chen/lgl-action-recognition
Last synced: 3 months ago
JSON representation
Lifelong Graph Learning (CVPR 2022) [Distributed Human Action Recognition]
- Host: GitHub
- URL: https://github.com/wang-chen/lgl-action-recognition
- Owner: wang-chen
- License: bsd-3-clause
- Created: 2021-01-21T05:26:04.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-03-05T00:06:36.000Z (almost 3 years ago)
- Last Synced: 2024-08-08T15:39:07.217Z (5 months ago)
- Language: Python
- Homepage:
- Size: 109 KB
- Stars: 8
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Lifelong Graph Learning
This repo is for the application in paper "[Lifelong Graph Learning](https://arxiv.org/pdf/2009.00647.pdf)", CVPR, 2022.
**Temporal and distributed pattern recognition** using the Wearable Action Recognition Dataset (WARD).
# Training and Testing
**Note that MLP, AFGN and GAT perform the best with Adam, while the others perform the best with SGD.**
For feature graph network (FGN):
python regular.py --model FGN --optim SGD
python lifelong.py --model FGN --optim SGD
For attention feature graph network (AFGN):python regular.py --model AFGN --optim Adam
python lifelong.py --model AFGN --optim AdamFor multi-layer perceptron (MLP):
python regular.py --model MLP --optim Adam
python lifelong.py --model MLP --optim AdamFor graph attention network (GAT):
python regular.py --model GAT --optim Adam
python lifelong.py --model GAT --optim Adam
For grach convolutional network (GCN):python regular.py --model GCN --optim SGD
python lifelong.py --model GCN --optim SGD
For approximated personalized propagation of neural predictions (APPNP):python regular.py --model APPNP --optim SGD
python lifelong.py --model APPNP --optim SGDYou can also specify the dataset location to be downloaded (Default: /data/datasets). For example:
python regular.py --data-root ./ --model FGN --optim SGD
# Reproduce results in the paper
Download [pre-trained models (v2.0)](https://github.com/wang-chen/graph-action-recognition/releases/download/v2.0/saves.zip) and extract. Then run:
python evaluation.py --load saves/lifelong-fgn-s0.model
python evaluation.py --load saves/lifelong-afgn-s0.model
python evaluation.py --load saves/lifelong-appnp-s0.model
python evaluation.py --load saves/lifelong-gcn-s0.model
python evaluation.py --load saves/lifelong-gat-s0.modelWe provide all snapshot models during training, which is named as "[task]-[model]-s[seed]-it[iteration].model".
For example, "lifelong-fgn-s0-it3000.model"# Citation
@inproceedings{wang2022lifelong,
title={Lifelong graph learning},
author={Wang, Chen and Qiu, Yuheng and Gao, Dasong and Scherer, Sebastian},
booktitle={2022 Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}