Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wang-chen/lgl-action-recognition

Lifelong Graph Learning (CVPR 2022) [Distributed Human Action Recognition]
https://github.com/wang-chen/lgl-action-recognition

Last synced: 3 months ago
JSON representation

Lifelong Graph Learning (CVPR 2022) [Distributed Human Action Recognition]

Awesome Lists containing this project

README

        

# Lifelong Graph Learning

This repo is for the application in paper "[Lifelong Graph Learning](https://arxiv.org/pdf/2009.00647.pdf)", CVPR, 2022.

**Temporal and distributed pattern recognition** using the Wearable Action Recognition Dataset (WARD).

# Training and Testing

**Note that MLP, AFGN and GAT perform the best with Adam, while the others perform the best with SGD.**

For feature graph network (FGN):

python regular.py --model FGN --optim SGD
python lifelong.py --model FGN --optim SGD

For attention feature graph network (AFGN):

python regular.py --model AFGN --optim Adam
python lifelong.py --model AFGN --optim Adam

For multi-layer perceptron (MLP):

python regular.py --model MLP --optim Adam
python lifelong.py --model MLP --optim Adam

For graph attention network (GAT):

python regular.py --model GAT --optim Adam
python lifelong.py --model GAT --optim Adam

For grach convolutional network (GCN):

python regular.py --model GCN --optim SGD
python lifelong.py --model GCN --optim SGD

For approximated personalized propagation of neural predictions (APPNP):

python regular.py --model APPNP --optim SGD
python lifelong.py --model APPNP --optim SGD

You can also specify the dataset location to be downloaded (Default: /data/datasets). For example:

python regular.py --data-root ./ --model FGN --optim SGD

# Reproduce results in the paper

Download [pre-trained models (v2.0)](https://github.com/wang-chen/graph-action-recognition/releases/download/v2.0/saves.zip) and extract. Then run:

python evaluation.py --load saves/lifelong-fgn-s0.model
python evaluation.py --load saves/lifelong-afgn-s0.model
python evaluation.py --load saves/lifelong-appnp-s0.model
python evaluation.py --load saves/lifelong-gcn-s0.model
python evaluation.py --load saves/lifelong-gat-s0.model

We provide all snapshot models during training, which is named as "[task]-[model]-s[seed]-it[iteration].model".

For example, "lifelong-fgn-s0-it3000.model"

# Citation

@inproceedings{wang2022lifelong,
title={Lifelong graph learning},
author={Wang, Chen and Qiu, Yuheng and Gao, Dasong and Scherer, Sebastian},
booktitle={2022 Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}
}