Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wangz10/class_imbalance
Jupyter Notebook presentation for class imbalance in binary classification
https://github.com/wangz10/class_imbalance
classification imbalanced-data machine-learning tutorial
Last synced: 2 months ago
JSON representation
Jupyter Notebook presentation for class imbalance in binary classification
- Host: GitHub
- URL: https://github.com/wangz10/class_imbalance
- Owner: wangz10
- License: cc-by-sa-4.0
- Created: 2016-02-26T21:07:39.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2018-08-11T14:31:29.000Z (over 6 years ago)
- Last Synced: 2024-04-09T22:17:08.029Z (10 months ago)
- Topics: classification, imbalanced-data, machine-learning, tutorial
- Language: Jupyter Notebook
- Homepage:
- Size: 1.47 MB
- Stars: 49
- Watchers: 3
- Forks: 15
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-imbalanced-learning - class_imbalance - Jupyter Notebook presentation for class imbalance in binary classification. (3.2 Github Repositories / 3.2.1 *Algorithms & Utilities & Jupyter Notebooks*)
README
# Practical tips for class imbalance in binary classification
#### _Zichen Wang_A [blog post](https://medium.com/@wangzc921/practical-tips-for-class-imbalance-in-binary-classification-6ee29bcdb8a7?source=friends_link&sk=16c43640eab3817a8de3cb15eedb181a) was writen based on this tutorial.
## Requirements
To run the notebook, install modules on Python2.7 in [requirements.txt](https://github.com/wangz10/class_imbalance/blob/master/requirements.txt).`
pip install -r requirements.txt
`