Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wangzhiyaoo/SVFR

Official implementation of SVFR.
https://github.com/wangzhiyaoo/SVFR

Last synced: 6 days ago
JSON representation

Official implementation of SVFR.

Awesome Lists containing this project

README

        


SVFR: A Unified Framework for Generalized Video Face Restoration


[![arXiv](https://img.shields.io/badge/arXiv-2307.04725-b31b1b.svg)](https://arxiv.org/pdf/2501.01235)
[![Project Page](https://img.shields.io/badge/Project-Website-green)](https://wangzhiyaoo.github.io/SVFR/)

## 🔥 Overview

SVFR is a unified framework for face video restoration that supports tasks such as **BFR, Colorization, Inpainting**, and **their combinations** within one cohesive system.

## 🎬 Demo

### BFR

| Case1 | Case2 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |

### BFR+Colorization

| Case3 | Case4 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |

### BFR+Colorization+Inpainting

| Case5 | Case6 |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| | |

## 🎙️ News

- **[2025.01.02]**: We released the initial version of the [inference code](#inference) and [models](#download-checkpoints). Stay tuned for continuous updates!
- **[2024.12.17]**: This repo is created!

## 🚀 Getting Started

## Setup

Use the following command to install a conda environment for SVFR from scratch:

```bash
conda create -n svfr python=3.9 -y
conda activate svfr
```

Install PyTorch: make sure to select the appropriate CUDA version based on your hardware, for example,

```bash
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2
```

Install Dependencies:

```bash
pip install -r requirements.txt
```

## Download checkpoints

  • Download the Stable Video Diffusion
  • ```
    conda install git-lfs
    git lfs install
    git clone https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt models/stable-video-diffusion-img2vid-xt
    ```

  • Download SVFR
  • You can download checkpoints manually through link on [Google Drive](https://drive.google.com/drive/folders/1nzy9Vk-yA_DwXm1Pm4dyE2o0r7V6_5mn?usp=share_link).

    Put checkpoints as follows:

    ```
    └── models
    ├── face_align
    │ ├── yoloface_v5m.pt
    ├── face_restoration
    │ ├── unet.pth
    │ ├── id_linear.pth
    │ ├── insightface_glint360k.pth
    └── stable-video-diffusion-img2vid-xt
    ├── vae
    ├── scheduler
    └── ...
    ```

    ## Inference

    ### Inference single or multi task

    ```
    python3 infer.py \
    --config config/infer.yaml \
    --task_ids 0 \
    --input_path ./assert/lq/lq1.mp4 \
    --output_dir ./results/
    ```

  • task_id:
  • > 0 -- bfr
    > 1 -- colorization
    > 2 -- inpainting
    > 0,1 -- bfr and colorization
    > 0,1,2 -- bfr and colorization and inpainting
    > ...

    ### Inference with additional inpainting mask

    ```
    # For Inference with Inpainting
    # Add '--mask_path' if you need to specify the mask file.

    python3 infer.py \
    --config config/infer.yaml \
    --task_ids 0,1,2 \
    --input_path ./assert/lq/lq3.mp4 \
    --output_dir ./results/
    --mask_path ./assert/mask/lq3.png
    ```

    ## BibTex
    ```
    @misc{wang2025svfrunifiedframeworkgeneralized,
    title={SVFR: A Unified Framework for Generalized Video Face Restoration},
    author={Zhiyao Wang and Xu Chen and Chengming Xu and Junwei Zhu and Xiaobin Hu and Jiangning Zhang and Chengjie Wang and Yuqi Liu and Yiyi Zhou and Rongrong Ji},
    year={2025},
    eprint={2501.01235},
    archivePrefix={arXiv},
    primaryClass={cs.CV},
    url={https://arxiv.org/abs/2501.01235},
    }
    ```