Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wannaphong/ttsmms
TTS with The Massively Multilingual Speech (MMS) project
https://github.com/wannaphong/ttsmms
library python text-to-speech
Last synced: about 7 hours ago
JSON representation
TTS with The Massively Multilingual Speech (MMS) project
- Host: GitHub
- URL: https://github.com/wannaphong/ttsmms
- Owner: wannaphong
- License: mit
- Created: 2023-05-23T05:14:12.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-07-12T13:22:54.000Z (7 months ago)
- Last Synced: 2025-01-19T07:08:28.481Z (7 days ago)
- Topics: library, python, text-to-speech
- Language: Python
- Homepage:
- Size: 3.28 MB
- Stars: 226
- Watchers: 7
- Forks: 37
- Open Issues: 12
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Support: support_list.txt
Awesome Lists containing this project
README
# ttsmms
Text-to-speech with The Massively Multilingual Speech (MMS) projectThis project want to help you for use Text-to-speech model from MMS project in Python.
Support 1,107 Languages! (See support_list.txt)
- VITS: [GitHub](https://github.com/jaywalnut310/vits)
- MMS: Scaling Speech Technology to 1000+ languages: [GitHub](https://github.com/facebookresearch/fairseq/tree/main/examples/mms)[Google colab](https://colab.research.google.com/github/wannaphong/ttsmms/blob/main/notebook/test.ipynb)
**Don't forget the TTS model in MMS project use CC-BY-NC license.**
## Install
> pip install ttsmms
## Usage
First, you need to download the model by
```python
from ttsmms import downloaddir_path = download("eng","./data") # lang_code, dir for save model
```or download file by yourself
**Linux/Mac**
1. download
> curl https://dl.fbaipublicfiles.com/mms/tts/lang_code.tar.gz --output lang_code.tar.gz
2. extract a tar ball archive.
**Linux/Mac**
> mkdir -p data && tar -xzf lang_code.tar.gz -C data/
and use code in python :D
```python
from ttsmms import TTStts=TTS(dir_path) # or "model_dir_path" your path dir that extract a tar ball archive
wav=tts.synthesis("txt")
# output:
# {
# "x":array(wav array),
# "sampling_rate": 16000
# }tts.synthesis("txt",wav_path="example.wav")
# output: example.wav file
```