Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wardbradt/Sentimental-Stock-Prediction
Analyzes the sentiment of SEC quarterly earnings reports to predict future stock prices
https://github.com/wardbradt/Sentimental-Stock-Prediction
data-visualization sentiment-analysis stock-market stocks
Last synced: 2 months ago
JSON representation
Analyzes the sentiment of SEC quarterly earnings reports to predict future stock prices
- Host: GitHub
- URL: https://github.com/wardbradt/Sentimental-Stock-Prediction
- Owner: wardbradt
- License: gpl-3.0
- Archived: true
- Created: 2017-11-11T18:23:47.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-02-18T17:33:47.000Z (almost 7 years ago)
- Last Synced: 2024-08-04T05:04:22.223Z (6 months ago)
- Topics: data-visualization, sentiment-analysis, stock-market, stocks
- Language: Python
- Homepage: https://wardbradt.github.io/Sentimental-Stock-Prediction/
- Size: 399 KB
- Stars: 25
- Watchers: 1
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Sentimental Stock Prediction
## Example Usage
Firstly, you must set `quandl.ApiConfig.api_key` at the top of sentimental.py to your quandl API key.
You can get a key [here](https://www.quandl.com/tools/api).
```
from sentimental import generate_earnings_day_reports# can be any stock ticker
ticker = "NVDA"
generate_earnings_day_reports(ticker)
```
Now when you view index.html, you will be able to view the visualization for your ticker.
## To Do:
- Find a better way to find the discussion/ overview section of each report than the current implementation in `find_overview_str`
- Fix price axis scaling