https://github.com/warner-benjamin/fastxtend
Train fastai models faster (and other useful tools)
https://github.com/warner-benjamin/fastxtend
deep-learning fastai machine-learning python pytorch
Last synced: 29 days ago
JSON representation
Train fastai models faster (and other useful tools)
- Host: GitHub
- URL: https://github.com/warner-benjamin/fastxtend
- Owner: warner-benjamin
- License: mit
- Created: 2021-08-25T20:35:50.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2025-06-04T05:13:21.000Z (5 months ago)
- Last Synced: 2025-08-14T09:48:30.420Z (3 months ago)
- Topics: deep-learning, fastai, machine-learning, python, pytorch
- Language: Jupyter Notebook
- Homepage: https://fastxtend.benjaminwarner.dev
- Size: 41.4 MB
- Stars: 70
- Watchers: 3
- Forks: 7
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# fastxtend
### Train fastai models faster (and other useful tools)

Train fastai models faster with fastxtend’s [fused
optimizers](https://fastxtend.benjaminwarner.dev/optimizer.fused.html),
[Progressive
Resizing](https://fastxtend.benjaminwarner.dev/callback.progresize.html)
callback, integrated [FFCV
DataLoader](https://fastxtend.benjaminwarner.dev/ffcv.tutorial.html),
and integrated [PyTorch
Compile](https://fastxtend.benjaminwarner.dev/callback.compiler.html)
support.
## Feature overview
**Train Models Faster**
- Drop in [fused
optimizers](https://fastxtend.benjaminwarner.dev/optimizer.fused.html),
which are 21 to 293 percent faster then fastai native optimizers.
- Up to 75% optimizer memory savings with integrated
[bitsandbytes](https://github.com/TimDettmers/bitsandbytes) [8-bit
optimizers](https://fastxtend.benjaminwarner.dev/optimizer.eightbit.html).
- Increase GPU throughput and decrease training time with the
[Progressive
Resizing](https://fastxtend.benjaminwarner.dev/callback.progresize.html)
callback.
- Use the highly optimized [FFCV
DataLoader](https://fastxtend.benjaminwarner.dev/ffcv.tutorial.html),
fully integrated with fastai.
- Integrated support for `torch.compile` via the
[Compile](https://fastxtend.benjaminwarner.dev/callback.compiler.html)
callbacks.
**General Features**
- Fused implementations of modern optimizers, such as
[Adan](https://fastxtend.benjaminwarner.dev/optimizer.adan.html),
[Lion](https://fastxtend.benjaminwarner.dev/optimizer.lion.html), &
[StableAdam](https://fastxtend.benjaminwarner.dev/optimizer.stableadam.html).
- Hugging Face [Transformers
compatibility](https://fastxtend.benjaminwarner.dev/text.huggingface.html)
with fastai
- Flexible [metrics](https://fastxtend.benjaminwarner.dev/metrics.html)
which can log on train, valid, or both. Backwards compatible with
fastai metrics.
- Easily use [multiple
losses](https://fastxtend.benjaminwarner.dev/multiloss.html) and log
each individual loss on train and valid.
- [Multiple
profilers](https://fastxtend.benjaminwarner.dev/callback.profiler.html)
for profiling training and identifying bottlenecks.
- A fast [Exponential Moving
Average](https://fastxtend.benjaminwarner.dev/callback.ema.html)
callback for smoother training.
**Vision**
- Apply
[`MixUp`](https://fastxtend.benjaminwarner.dev/callback.cutmixup.html#mixup),
[`CutMix`](https://fastxtend.benjaminwarner.dev/callback.cutmixup.html#cutmix),
or Augmentations at once with
[`CutMixUp`](https://fastxtend.benjaminwarner.dev/callback.cutmixup.html#cutmixup)
or
[`CutMixUpAugment`](https://fastxtend.benjaminwarner.dev/callback.cutmixup.html#cutmixupaugment).
- Additional [image
augmentations](https://fastxtend.benjaminwarner.dev/vision.augment.batch.html).
- Support for running fastai [batch transforms on
CPU](https://fastxtend.benjaminwarner.dev/vision.data.html).
- More
[attention](https://fastxtend.benjaminwarner.dev/vision.models.attention_modules.html)
and
[pooling](https://fastxtend.benjaminwarner.dev/vision.models.pooling.html)
modules
- A flexible implementation of fastai’s
[`XResNet`](https://fastxtend.benjaminwarner.dev/vision.models.xresnet.html#xresnet).
Check out the documentation for additional splitters, callbacks,
schedulers, utilities, and more.
## Documentation
## Install
fastxtend is avalible on pypi:
``` bash
pip install fastxtend
```
fastxtend can be installed with task-specific dependencies for `vision`,
`ffcv`, `text`, `audio`, or `all`:
``` bash
pip install "fastxtend[all]"
```
To easily install most prerequisites for all fastxtend features, use
[Conda](https://docs.conda.io/en/latest) or
[Miniconda](https://docs.conda.io/en/latest/miniconda.html):
``` bash
conda create -n fastxtend python=3.11 "pytorch>=2.1" torchvision torchaudio \
pytorch-cuda=12.1 fastai nbdev pkg-config libjpeg-turbo "opencv<4.8" tqdm psutil \
terminaltables numpy "numba>=0.57" librosa timm kornia rich typer wandb \
"transformers>=4.34" "tokenizers>=0.14" "datasets>=2.14" ipykernel ipywidgets \
"matplotlib<3.8" -c pytorch -c nvidia -c fastai -c huggingface -c conda-forge
conda activate fastxtend
pip install "fastxtend[all]"
```
replacing `pytorch-cuda=12.1` with your preferred [supported version of
Cuda](https://pytorch.org/get-started/locally).
To create an editable development install:
``` bash
git clone https://github.com/warner-benjamin/fastxtend.git
cd fastxtend
pip install -e ".[dev]"
```
## Usage
Like fastai, fastxtend provides safe wildcard imports using python’s
`__all__`.
``` python
from fastai.vision.all import *
from fastxtend.vision.all import *
from fastxtend.ffcv.all import *
```
In general, import fastxtend after all fastai imports, as fastxtend
modifies fastai. Any method modified by fastxtend is backwards
compatible with the original fastai code.
## Examples
Use a fused ForEach optimizer:
``` python
Learner(..., opt_func=adam(foreach=True))
```
Or a bitsandbytes 8-bit optimizer:
``` python
Learner(..., opt_func=adam(eightbit=True))
```
Speed up image training using Progressive Resizing:
``` python
Learner(... cbs=ProgressiveResize())
```
Log an accuracy metric on the training set as a smoothed metric and
validation set like normal:
``` python
Learner(..., metrics=[Accuracy(log_metric=LogMetric.Train, metric_type=MetricType.Smooth),
Accuracy()])
```
Log multiple losses as individual metrics on train and valid:
``` python
mloss = MultiLoss(loss_funcs=[nn.MSELoss, nn.L1Loss],
weights=[1, 3.5], loss_names=['mse_loss', 'l1_loss'])
Learner(..., loss_func=mloss, metrics=RMSE(), cbs=MultiLossCallback)
```
Compile a model with `torch.compile`:
``` python
from fastxtend.callback import compiler
learn = Learner(...).compile()
```
Profile a fastai training loop:
``` python
from fastxtend.callback import simpleprofiler
learn = Learner(...).profile()
learn.fit_one_cycle(2, 3e-3)
```
## Benchmark
To run the benchmark on your own machine, see the [example
scripts](https://github.com/warner-benjamin/fastxtend/tree/main/examples)
for details on how to replicate.