https://github.com/warvito/neurocombat_sklearn
Implementation of Combat harmonization method with scikit-learn compatible format
https://github.com/warvito/neurocombat_sklearn
combat harmonization inter-scanner neurocombat neuroimaging normalization
Last synced: about 1 month ago
JSON representation
Implementation of Combat harmonization method with scikit-learn compatible format
- Host: GitHub
- URL: https://github.com/warvito/neurocombat_sklearn
- Owner: Warvito
- License: mit
- Created: 2019-09-06T10:52:53.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-10-16T23:18:55.000Z (almost 6 years ago)
- Last Synced: 2025-09-07T07:39:17.180Z (about 1 month ago)
- Topics: combat, harmonization, inter-scanner, neurocombat, neuroimaging, normalization
- Language: Python
- Homepage:
- Size: 18.2 MB
- Stars: 23
- Watchers: 4
- Forks: 13
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# NeuroCombat-sklearn
[](https://opensource.org/licenses/MIT)
[](https://pypi.org/project/neurocombat-sklearn/)
[]()Implementation of Combat harmonization method in scikit-learn compatible format.
The Combat harmonization/normalization method uses an parametric empirical Bayes framework to robustly adjust data for site/batch effects.
The scikit-learn compatible format was used to facilitates the use of this harmonization method in machine learning projects.This repository is developed by [Walter Hugo Lopez Pinaya](https://scholar.google.com/citations?user=jjT5-HUAAAAJ) at King's College London and community contributors.
## Installation
### Requirements
- Python (>= 3.5)
- [Scikit-Learn](https://scikit-learn.org/) (>= 0.21.0)### User installation
If you already have a working installation of numpy and scipy,
the easiest way to install neurocombat-sklearn is using ``pip`` :pip install neurocombat-sklearn
## Citation
If you find this code useful for your research, please cite:@article{fortin2018harmonization,
title={Harmonization of cortical thickness measurements across scanners and sites},
author={Fortin, Jean-Philippe and Cullen, Nicholas and Sheline, Yvette I and Taylor, Warren D and Aselcioglu, Irem and Cook, Philip A and Adams, Phil and Cooper, Crystal and Fava, Maurizio and McGrath, Patrick J and others},
journal={Neuroimage},
volume={167},
pages={104--120},
year={2018},
publisher={Elsevier}
}
@article{johnson2007adjusting,
title={Adjusting batch effects in microarray expression data using empirical Bayes methods},
author={Johnson, W Evan and Li, Cheng and Rabinovic, Ariel},
journal={Biostatistics},
volume={8},
number={1},
pages={118--127},
year={2007},
publisher={Oxford University Press}
}### Disclaimer
Based on:
- https://github.com/ncullen93/neuroCombat
- https://github.com/nih-fmrif/nielson_abcd_2018
- https://github.com/Jfortin1/ComBatHarmonization