An open API service indexing awesome lists of open source software.

https://github.com/warvito/neurocombat_sklearn

Implementation of Combat harmonization method with scikit-learn compatible format
https://github.com/warvito/neurocombat_sklearn

combat harmonization inter-scanner neurocombat neuroimaging normalization

Last synced: about 1 month ago
JSON representation

Implementation of Combat harmonization method with scikit-learn compatible format

Awesome Lists containing this project

README

          

# NeuroCombat-sklearn
[![License: MIT](https://img.shields.io/github/license/Warvito/neurocombat_sklearn)](https://opensource.org/licenses/MIT)
[![Version](https://img.shields.io/pypi/v/neurocombat-sklearn)](https://pypi.org/project/neurocombat-sklearn/)
[![PythonVersion](https://img.shields.io/pypi/pyversions/neurocombat-sklearn)]()

Implementation of Combat harmonization method in scikit-learn compatible format.

The Combat harmonization/normalization method uses an parametric empirical Bayes framework to robustly adjust data for site/batch effects.
The scikit-learn compatible format was used to facilitates the use of this harmonization method in machine learning projects.

This repository is developed by [Walter Hugo Lopez Pinaya](https://scholar.google.com/citations?user=jjT5-HUAAAAJ) at King's College London and community contributors.

## Installation

### Requirements
- Python (>= 3.5)
- [Scikit-Learn](https://scikit-learn.org/) (>= 0.21.0)

### User installation

If you already have a working installation of numpy and scipy,
the easiest way to install neurocombat-sklearn is using ``pip`` :

pip install neurocombat-sklearn

## Citation
If you find this code useful for your research, please cite:

@article{fortin2018harmonization,
title={Harmonization of cortical thickness measurements across scanners and sites},
author={Fortin, Jean-Philippe and Cullen, Nicholas and Sheline, Yvette I and Taylor, Warren D and Aselcioglu, Irem and Cook, Philip A and Adams, Phil and Cooper, Crystal and Fava, Maurizio and McGrath, Patrick J and others},
journal={Neuroimage},
volume={167},
pages={104--120},
year={2018},
publisher={Elsevier}
}

@article{johnson2007adjusting,
title={Adjusting batch effects in microarray expression data using empirical Bayes methods},
author={Johnson, W Evan and Li, Cheng and Rabinovic, Ariel},
journal={Biostatistics},
volume={8},
number={1},
pages={118--127},
year={2007},
publisher={Oxford University Press}
}

### Disclaimer

Based on:
- https://github.com/ncullen93/neuroCombat
- https://github.com/nih-fmrif/nielson_abcd_2018
- https://github.com/Jfortin1/ComBatHarmonization