Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/waseemofficial/python-and-scikit-learn

Python and Scikit-Learn
https://github.com/waseemofficial/python-and-scikit-learn

Last synced: 22 days ago
JSON representation

Python and Scikit-Learn

Awesome Lists containing this project

README

        












### Languages

![Python](https://img.shields.io/badge/-Python-000?&logo=Python)
![JavaScript](https://img.shields.io/badge/-JavaScript-000?&logo=JavaScript)
![Golang](https://img.shields.io/badge/-Golang-000?&logo=Go)
![Java](https://img.shields.io/badge/-Java-000?&logo=jdk)
![Solidity](https://img.shields.io/badge/-Solidity-000?&logo=Solidity)
![SQL](https://img.shields.io/badge/-SQL-000?&logo=MySQL)
![Bash](https://img.shields.io/badge/-Bash-000?&logo=gnu-bash&logoColor=white)
![Bash](https://img.shields.io/badge/-markdown-000?&logo=markdown)

### Technologies

![Docker](https://img.shields.io/badge/-Docker-000?&logo=Docker)
![Linux](https://img.shields.io/badge/-Linux-000?&logo=Linux)
![Node.js](https://img.shields.io/badge/-Node.js-000?&logo=node.js)
![React](https://img.shields.io/badge/-React-000?&logo=React)
![Redis](https://img.shields.io/badge/-Redis-000?&logo=Redis)
![Cypress](https://img.shields.io/badge/-Postman-000?&logo=Postman)
![Cypress](https://img.shields.io/badge/-Cypress-000?&logo=Cypress)
![GitHub](https://img.shields.io/badge/-GitHub-000?&logo=GitHub)
![GitHub](https://img.shields.io/badge/-Selenium-000?&logo=Selenium)
![GitHub](https://img.shields.io/badge/-Regex-000?&logo=Regex)
![GithubActions](https://img.shields.io/badge/-GithubActions-000?&logo=GithubActions)




# **Machine Learning using Scikit-Learn**

- Data Cleaning
- missing values
- outliers
- imputing
- data type conversion
- data imbalance detection
- classifing data into catogrical and numerical
- Data Pre-Processing
- Standardization
- Normalization
- One-Hot Encoding
- Label Encoding
- Dummy Data Encoding
- Feature Engineering
- mlxtend
- SequentialFeatureSelector
- Sequential Backward Selection (SBS)
- Sequential Forward Selection (SBS)
- Feature Importance Permutation
- Feature Scaling
- Feature Selection
- Feature Extraction
- Feature Transformation
- Explotri Data Analysis (EDA)
- univariate analysis
- Bivariate analysis
- Multivariate Analysis
- Pandas-profiling
- Model Selection
- Type of Data
- image and video -> oprncv Convolution Nural Network(CNN)
- text data or Speach -> (RNN)
- Numerical data -> SVM,Logistic Regression,Decision Tree etc
- Based on the Task we need to carry out
- Classification task -> SVM,Logistic Regression,Decision Tree etc
- Regression Task -> Linear Regression,Random Forest,Polynomial Regression etc
- Clustering Task -> K-Means Cluster,Hierarchical Clustering (**Unsupervised Learning**)
- Model Buld
- Decision Tree
- Random Forest
- Linear Regression
- Mean Absolute Error(MAE),Mean Squired Error(MSE), Root Mean Squired Error(RMSE), R2 Score (Coefficent of Determination), Adjusted R2 Score
- Gradient Descent (optimization technique)
- Logistic Regression
- Gradient Descent (optimization technique)
- Support Vector Machie (SVM)
- Naive Bayes
- K-Nearest Neighbors (KNN)
- K-Means Cluster
- Evaluation
- Hyperparameter Tuning
- GridSearchCV
- RandomizedSearchCV
- Accuracy Score
- Confusion Matrix
- Precision
- Recall
- F1 Score
- Ensemble Learning
- Voting Ensemble
- Bagging Ensemble
- Boosting Ensemble
- Ada-Boosting
- Gradient Boosting
- XGBoost
- Stacking Ensemble