Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wbjang/code-nerf
Official repository for CodeNeRF
https://github.com/wbjang/code-nerf
Last synced: 2 months ago
JSON representation
Official repository for CodeNeRF
- Host: GitHub
- URL: https://github.com/wbjang/code-nerf
- Owner: wbjang
- License: mit
- Created: 2021-08-15T11:19:05.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-02-21T16:29:27.000Z (11 months ago)
- Last Synced: 2024-02-21T17:39:38.379Z (11 months ago)
- Language: Python
- Size: 36.1 KB
- Stars: 121
- Watchers: 16
- Forks: 14
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-NeRF - Torch
- awesome-NeRF - Torch
README
## CodeNeRF: Disentangled Neural Radiance Fields for Object Categories
Date : 27th Feb, 2022
This contains the implementation of the paper [CodeNeRF](https://arxiv.org/abs/2109.01750).
Please refer to the [project webpage](https://sites.google.com/view/wbjang/home/codenerf) for demos.### Install the environment
```
conda env create -f environment.yml
conda activate code_nerf
```### Catalog
- [x] Training
- [x] Optimizing with GT pose
- [ ] Editing Shapes/Textures
- [ ] Pose Optimizing### Download the data (ShapeNet-SRN)
For ShapeNet-SRN dataset, you can download it from https://drive.google.com/drive/folders/1PsT3uKwqHHD2bEEHkIXB99AlIjtmrEiR
### Training
```
python train.py --gpu --save_dir --jsonfiles --iters_crop 1000000 --iters_all 1200000
```JSON files contain hyper-parameters as well as data directory. 'iters_crop' and 'iters_all' are number of iterations for both cropped and whole images.
### Optimizing
```
python optimize.py --gpu --saved_dir
```The result will be stored in , and each folder contains the progress of optimization, and the evaluation of test set.
The final optimized results and the quantitative evaluations are stored in 'trained_dir/test(_num)/codes.pth'### BibTex
```
@inproceedings{jang2021codenerf,
title={Codenerf: Disentangled neural radiance fields for object categories},
author={Jang, Wonbong and Agapito, Lourdes},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={12949--12958},
year={2021}
}
```### References
Some parts of code are borrowed from below amazing repositories.
* The GitHub repository of Pixel NeRF : https://github.com/sxyu/pixel-nerf
* nerf_pl : https://github.com/kwea123/nerf_pl
* NeRF-pytorch : https://github.com/yenchenlin/nerf-pytorch### Supplementary Video
https://user-images.githubusercontent.com/32883157/130004248-0ff74d4e-993e-43f2-91ee-bd25776e65bc.mp4
### License
MIT