Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/wcandillon/react-native-webgpu
React Native implementation of WebGPU using Dawn
https://github.com/wcandillon/react-native-webgpu
Last synced: 1 day ago
JSON representation
React Native implementation of WebGPU using Dawn
- Host: GitHub
- URL: https://github.com/wcandillon/react-native-webgpu
- Owner: wcandillon
- License: mit
- Created: 2024-06-17T16:44:42.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-10-24T18:32:51.000Z (3 months ago)
- Last Synced: 2024-10-25T06:08:27.491Z (3 months ago)
- Language: TypeScript
- Homepage:
- Size: 22.1 MB
- Stars: 405
- Watchers: 8
- Forks: 19
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- awesome - wcandillon/react-native-webgpu - React Native implementation of WebGPU using Dawn (TypeScript)
- awesome-webgpu - React Native WebGPU - React Native implementation of WebGPU using Dawn. (Libraries / Safari)
README
# React Native WebGPU
React Native implementation of WebGPU using [Dawn](https://dawn.googlesource.com/dawn).
This is currently a technical preview for early adopters.## Installation
Please note that the package name is `react-native-wgpu`.
```
npm install react-native-wgpu
```Below are some examples from the [example app](/apps/example/).
https://github.com/user-attachments/assets/116a41b2-2cf8-49f1-9f16-a5c83637c198
Starting from `r168`, Three.js runs out of the box with React Native WebGPU.
You need to have a slight modification of [the metro config](/apps/example/metro.config.js) to resolve Three.js to the WebGPU build.
We also support [three-fiber](/apps/example/src/ThreeJS/Fiber.tsx).
For model loading, we also need [the following polyfill](/apps/example/src/App.tsx#29).https://github.com/user-attachments/assets/5b49ef63-0a3c-4679-aeb5-e4b4dddfcc1d
We also provide prebuilt binaries for visionOS and macOS.
https://github.com/user-attachments/assets/2d5c618e-5b15-4cef-8558-d4ddf8c70667
## Usage
Currently we recommend to use the `useCanvasEffect` to access the WebGPU context.
```tsx
import React from "react";
import { StyleSheet, View, PixelRatio } from "react-native";
import { Canvas, useCanvasEffect } from "react-native-wgpu";import { redFragWGSL, triangleVertWGSL } from "./triangle";
export function HelloTriangle() {
const ref = useCanvasEffect(async () => {
const adapter = await navigator.gpu.requestAdapter();
if (!adapter) {
throw new Error("No adapter");
}
const device = await adapter.requestDevice();
const presentationFormat = navigator.gpu.getPreferredCanvasFormat();const context = ref.current!.getContext("webgpu")!;
const canvas = context.canvas as HTMLCanvasElement;
canvas.width = canvas.clientWidth * PixelRatio.get();
canvas.height = canvas.clientHeight * PixelRatio.get();if (!context) {
throw new Error("No context");
}context.configure({
device,
format: presentationFormat,
alphaMode: "opaque",
});const pipeline = device.createRenderPipeline({
layout: "auto",
vertex: {
module: device.createShaderModule({
code: triangleVertWGSL,
}),
entryPoint: "main",
},
fragment: {
module: device.createShaderModule({
code: redFragWGSL,
}),
entryPoint: "main",
targets: [
{
format: presentationFormat,
},
],
},
primitive: {
topology: "triangle-list",
},
});const commandEncoder = device.createCommandEncoder();
const textureView = context.getCurrentTexture().createView();
const renderPassDescriptor: GPURenderPassDescriptor = {
colorAttachments: [
{
view: textureView,
clearValue: [0, 0, 0, 1],
loadOp: "clear",
storeOp: "store",
},
],
};const passEncoder = commandEncoder.beginRenderPass(renderPassDescriptor);
passEncoder.setPipeline(pipeline);
passEncoder.draw(3);
passEncoder.end();device.queue.submit([commandEncoder.finish()]);
context.present();
});return (
);
}const style = StyleSheet.create({
container: {
flex: 1,
},
webgpu: {
flex: 1,
},
});
```## Example App
To run the example app you first need to [build Dawn or download the prebuilt binaries](#building-dawn).
From there you will be able to run the example app properly.
## Similarities and Differences with the Web
The API has been designed to be completely symmetric with the Web.
For instance, you can access the WebGPU context synchronously, as well as the canvas size.
Pixel density and canvas resizing are handled exactly like on the Web as well.```tsx
// The default canvas size is not scaled to the device pixel ratio
// When resizing the canvas, the clientWidth and clientHeight are updated automatically
// This behaviour is symmetric to the Web
const ctx = canvas.current.getContext("webgpu")!;
ctx.canvas.width = ctx.canvas.clientWidth * PixelRatio.get();
ctx.canvas.height = ctx.canvas.clientHeight * PixelRatio.get();
```### Frame Scheduling
In React Native, we want to keep frame presentation as a manual operation as we plan to provide more advanced rendering options that are React Native specific.
This means that when you are ready to present a frame, you need to call `present` on the context.```tsx
// draw
// submit to the queue
device.queue.submit([commandEncoder.finish()]);
// This method is React Native only
context.present();
```### External Textures
This module provides a `createImageBitmap` function that you can use in `copyExternalImageToTexture`.
```tsx
const url = Image.resolveAssetSource(require("./assets/image.png")).uri;
const response = await fetch(url);
const imageBitmap = await createImageBitmap(await response.blob());const texture = device.createTexture({
size: [imageBitmap.width, imageBitmap.height, 1],
format: "rgba8unorm",
usage:
GPUTextureUsage.TEXTURE_BINDING |
GPUTextureUsage.COPY_DST |
GPUTextureUsage.RENDER_ATTACHMENT,
});
device.queue.copyExternalImageToTexture(
{ source: imageBitmap },
{ texture },
[imageBitmap.width, imageBitmap.height],
);
```## Troubleshooting
### iOS
To run the React Native WebGPU project on the iOS simulator, you need to disable the Metal validation API.
In "Edit Scheme," uncheck "Metal Validation."## Library Development
Make sure to check out the submodules:
```
git submodule update --init
```Make sure you have all the tools required for building the Skia libraries (Android Studio, XCode, Ninja, CMake, Android NDK/build tools).
### Building Dawn
```sh
yarn
cd packages/webgpu
yarn build-dawn
```You can also filter the platforms to build, for instance to skip the macOS and visionOS build:
```sh
yarn build-dawn --exclude=xros,xrsimulator,macosx
```Alternatively if you want to build for a specific platform only, you can use `includeOnly`.
```sh
yarn build-dawn --includeOnly=xros,xrsimulator
```### Downloading Dawn
There is an alternative way which is to download the prebuilt binaries from GitHub.
You need to have the [Github CLI](https://cli.github.com/) installed:```sh
$ yarn
$ cd packages/webgpu
$ yarn download-artifacts
$ yarn copy-artifacts
```Alternatively you can also download the prebuilt binaries [here](https://github.com/wcandillon/react-native-webgpu/actions/workflows/build-dawn.yml).
### Upgrading
1. `git submodule update --remote`
2. `yarn clean-dawn`
3. `yarn build-dawn`### Codegen
* `cd packages/webgpu && yarn codegen`
### Testing
In the `package` folder, to run the test against Chrome for reference:
```
yarn test:ref
```To run the e2e test, open the example app on the e2e screen.
By default, it will try to connect to a localhost test server.
If you want to run the test suite on a physical device, you can modify the address [here](/apps/example/src/useClient.ts#L4).```
yarn test
```