Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/wd60622/conjugate

Bayesian Conjugate Models in Python
https://github.com/wd60622/conjugate

bayesian-inference data-science probability-distribution python statistical-analysis statistics

Last synced: 2 months ago
JSON representation

Bayesian Conjugate Models in Python

Awesome Lists containing this project

README

        

# Conjugate Models

[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Tests](https://github.com/wd60622/conjugate/actions/workflows/tests.yml/badge.svg)](https://github.com/wd60622/conjugate/actions/workflows/tests.yml)
[![PyPI version](https://badge.fury.io/py/conjugate-models.svg)](https://badge.fury.io/py/conjugate-models)
[![docs](https://github.com/wd60622/conjugate/actions/workflows/docs.yml/badge.svg)](https://wd60622.github.io/conjugate/)
[![codecov](https://codecov.io/github/wd60622/conjugate/branch/main/graph/badge.svg)](https://app.codecov.io/github/wd60622/conjugate)

Bayesian conjugate models in Python

## Installation

```bash
pip install conjugate-models
```

## Features

- [Connection to Scipy Distributions](https://wd60622.github.io/conjugate/examples/scipy-connection) with `dist` attribute
- [Built in Plotting](https://wd60622.github.io/conjugate/examples/plotting) with `plot_pdf`, `plot_pmf`, and `plot_cdf` methods
- [Vectorized Operations](https://wd60622.github.io/conjugate/examples/vectorized-inputs) for parameters and data
- [Indexing Parameters](https://wd60622.github.io/conjugate/examples/indexing) for subsetting and slicing
- [Generalized Numerical Inputs](https://wd60622.github.io/conjugate/examples/generalized-inputs) for any inputs that act like numbers
- Out of box compatibility with `polars`, `pandas`, `numpy`, and more.
- [Unsupported Distributions](https://wd60622.github.io/conjugate/examples/pymc-sampling) for sampling from unsupported distributions

## Supported Models

Many likelihoods are supported including

- `Bernoulli` / `Binomial`
- `Categorical` / `Multinomial`
- `Poisson`
- `Normal` (including linear regression)
- and [many more](https://wd60622.github.io/conjugate/models/)

## Basic Usage

1. Define prior distribution from `distributions` module
1. Pass data and prior into model from `models` modules
1. Analytics with posterior and posterior predictive distributions

```python
from conjugate.distributions import Beta, BetaBinomial
from conjugate.models import binomial_beta, binomial_beta_predictive

# Observed Data
x = 4
N = 10

# Analytics
prior = Beta(1, 1)
prior_predictive: BetaBinomial = binomial_beta_predictive(n=N, distribution=prior)

posterior: Beta = binomial_beta(n=N, x=x, prior=prior)
posterior_predictive: BetaBinomial = binomial_beta_predictive(n=N, distribution=posterior)
```

From here, do any analysis you'd like!

```python
# Figure
import matplotlib.pyplot as plt

fig, axes = plt.subplots(ncols=2)

ax = axes[0]
ax = posterior.plot_pdf(ax=ax, label="posterior")
prior.plot_pdf(ax=ax, label="prior")
ax.axvline(x=x/N, color="black", ymax=0.05, label="MLE")
ax.set_title("Success Rate")
ax.legend()

ax = axes[1]
posterior_predictive.plot_pmf(ax=ax, label="posterior predictive")
prior_predictive.plot_pmf(ax=ax, label="prior predictive")
ax.axvline(x=x, color="black", ymax=0.05, label="Sample")
ax.set_title("Number of Successes")
ax.legend()
plt.show()
```

More examples on in the [documentation](https://wd60622.github.io/conjugate/).

## Contributing

If you are interested in contributing, check out the [contributing guidelines](https://github.com/wd60622/conjugate/blob/main/CONTRIBUTING.md)