https://github.com/webintellectual/travelling-salesman-problem-busted-with-ai
We have solved famous Travelling Salesman Problem using an AI algorithm Simulated Annealing
https://github.com/webintellectual/travelling-salesman-problem-busted-with-ai
ai beyond ipynb-jupyter-notebook python3 simulated-annealing simulated-annealing-algorithm state-space-search tsp tsp-problem tsp-solver visualization
Last synced: 3 months ago
JSON representation
We have solved famous Travelling Salesman Problem using an AI algorithm Simulated Annealing
- Host: GitHub
- URL: https://github.com/webintellectual/travelling-salesman-problem-busted-with-ai
- Owner: webintellectual
- Created: 2023-01-20T16:46:44.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-08-07T12:14:11.000Z (almost 2 years ago)
- Last Synced: 2025-01-12T17:09:17.111Z (4 months ago)
- Topics: ai, beyond, ipynb-jupyter-notebook, python3, simulated-annealing, simulated-annealing-algorithm, state-space-search, tsp, tsp-problem, tsp-solver, visualization
- Language: Jupyter Notebook
- Homepage:
- Size: 3.59 MB
- Stars: 0
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: Readme.md
Awesome Lists containing this project
README
**ALGORITHM USED** : Simulated Annealing
---
### **131 VLSI Data Points:**
Optimal Path
(length = 564) | Our Output by SA
(length = 646)
:-------------------------:|:-------------------------:|
### **237 VLSI Data Points:**
Optimal Path
(length = 1019) | Our Output by SA
(length = 1156)
:-------------------------:|:-------------------------:| 
### **343 VLSI Data Points:**
Optimal Path
(length = 1368) | Our Output by SA
(length = 1464)
:-------------------------:|:-------------------------:|
### **379 VLSI Data Points:**
Optimal Path
(length = 1332) | Our Output by SA
(length = 1518)
:-------------------------:|:-------------------------:|
### **380 VLSI Data Points:**
Optimal Path
(length = 1621) | Our Output by SA
(length = 1941)
:-------------------------:|:-------------------------:|
---
---### **Rajasthan dataset**:
Initial Random Path
(5272.22 km) | Output by SA
(2148.81 km)
:-------------------------:|:-------------------------:
 | ---
### **MY REFERENCES**:
Helped in code implementation:- [Haversine formula](https://www.geeksforgeeks.org/program-distance-two-points-earth/) to calculate distance b/w two locations using latitude and longitude values.
- [TSP implementation](https://github.com/pratikiiitv/cs302/blob/main/tsp_sa.m) on random data set by [Dr. Pratik Shah](https://pratikiiitv.github.io/)
- For conversion of longtidue, latitude to x-y cordinates: https://gis.stackexchange.com/questions/212723/how-can-i-convert-lon-lat-coordinates-to-x-y
- [TSPLIB 95](https://pypi.org/project/tsplib95/) python library by [Robert Grant](https://github.com/rhgrant10)[VLSI Datset](https://www.math.uwaterloo.ca/tsp/vlsi/index.html) provided by [Andre Rohe](https://www.linkedin.com/in/andre-rohe-647521/)
---
## ⚠ **CAUTION**:
© You must take permission from me before using this code in your work/project.
Following attributes are mandatory:
GitHub: https://github.com/webintellectual/Travelling-Salesman-Problem-busted-with-AI
Linkedin: https://www.linkedin.com/in/akshay-189a48200/
Medium: https://medium.com/@warriorak77