Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/weblyzard/inscriptis

A python based HTML to text conversion library, command line client and Web service.
https://github.com/weblyzard/inscriptis

client converter html html2text library python web-service

Last synced: 11 days ago
JSON representation

A python based HTML to text conversion library, command line client and Web service.

Awesome Lists containing this project

README

        

==================================================================================
inscriptis -- HTML to text conversion library, command line client and Web service
==================================================================================

.. image:: https://img.shields.io/pypi/pyversions/inscriptis
:target: https://badge.fury.io/py/inscriptis
:alt: Supported python versions

.. image:: https://api.codeclimate.com/v1/badges/f8ed73f8a764f2bc4eba/maintainability
:target: https://codeclimate.com/github/weblyzard/inscriptis/maintainability
:alt: Maintainability

.. image:: https://codecov.io/gh/weblyzard/inscriptis/branch/master/graph/badge.svg
:target: https://codecov.io/gh/weblyzard/inscriptis/
:alt: Coverage

.. image:: https://github.com/weblyzard/inscriptis/actions/workflows/python-package.yml/badge.svg
:target: https://github.com/weblyzard/inscriptis/actions/workflows/python-package.yml
:alt: Build status

.. image:: https://readthedocs.org/projects/inscriptis/badge/?version=latest
:target: https://inscriptis.readthedocs.io/en/latest/?badge=latest
:alt: Documentation status

.. image:: https://badge.fury.io/py/inscriptis.svg
:target: https://badge.fury.io/py/inscriptis
:alt: PyPI version

.. image:: https://pepy.tech/badge/inscriptis
:target: https://pepy.tech/project/inscriptis
:alt: PyPI downloads

.. image:: https://joss.theoj.org/papers/10.21105/joss.03557/status.svg
:target: https://doi.org/10.21105/joss.03557

A python based HTML to text conversion library, command line client and Web
service with support for **nested tables**, a **subset of CSS** and optional
support for providing an **annotated output**.

Inscriptis is particularly well suited for applications that require high-performance, high-quality (i.e., layout-aware) text representations of HTML content, and will aid knowledge extraction and data science tasks conducted upon Web data.

Please take a look at the
`Rendering `_
document for a demonstration of inscriptis' conversion quality.

A Java port of inscriptis 1.x has been published by
`x28 `_.

This document provides a short introduction to Inscriptis.

- The full documentation is built automatically and published on `Read the Docs `_.
- If you are interested in a more general overview on the topic of *text extraction from HTML*, this `blog post on different HTML to text conversion approaches, and criteria for selecting them `_ might be interesting to you.

.. contents:: Table of contents

Statement of need - why inscriptis?
===================================

1. Inscriptis provides a **layout-aware** conversion of HTML that more closely resembles the rendering obtained from standard Web browsers and, therefore, better preserves the spatial arrangement of text elements.

Conversion quality becomes a factor once you need to move beyond simple HTML snippets. Non-specialized approaches and less sophisticated libraries do not correctly interpret HTML semantics and, therefore, fail to properly convert constructs such as itemizations, enumerations, and tables.

Beautiful Soup's ``get_text()`` function, for example, converts the following HTML enumeration to the string ``firstsecond``.

.. code-block:: HTML


  • first

  • second

    • Inscriptis, in contrast, not only returns the correct output

      .. code-block::

      * first
      * second

      but also supports much more complex constructs such as nested tables and also interprets a subset of HTML (e.g., ``align``, ``valign``) and CSS (e.g., ``display``, ``white-space``, ``margin-top``, ``vertical-align``, etc.) attributes that determine the text alignment. Any time the spatial alignment of text is relevant (e.g., for many knowledge extraction tasks, the computation of word embeddings and language models, and sentiment analysis) an accurate HTML to text conversion is essential.

      2. Inscriptis supports `annotation rules <#annotation-rules>`_, i.e., user-provided mappings that allow for annotating the extracted text based on structural and semantic information encoded in HTML tags and attributes used for controlling structure and layout in the original HTML document. These rules might be used to

      - provide downstream knowledge extraction components with additional information that may be leveraged to improve their respective performance.
      - assist manual document annotation processes (e.g., for qualitative analysis or gold standard creation). ``Inscriptis`` supports multiple export formats such as XML, annotated HTML and the JSONL format that is used by the open source annotation tool `doccano `_.
      - enabling the use of ``Inscriptis`` for tasks such as content extraction (i.e., extract task-specific relevant content from a Web page) which rely on information on the HTML document's structure.

      Installation
      ============

      At the command line::

      $ pip install inscriptis

      Or, if you don't have pip installed::

      $ easy_install inscriptis

      Python library
      ==============

      Embedding inscriptis into your code is easy, as outlined below:

      .. code-block:: python

      import urllib.request
      from inscriptis import get_text

      url = "https://www.fhgr.ch"
      html = urllib.request.urlopen(url).read().decode('utf-8')

      text = get_text(html)
      print(text)

      Standalone command line client
      ==============================
      The command line client converts HTML files or text retrieved from Web pages to
      the corresponding text representation.

      Command line parameters
      -----------------------

      The inscript command line client supports the following parameters::

      usage: inscript [-h] [-o OUTPUT] [-e ENCODING] [-i] [-d] [-l] [-a] [-r ANNOTATION_RULES] [-p POSTPROCESSOR] [--indentation INDENTATION]
      [--table-cell-separator TABLE_CELL_SEPARATOR] [-v]
      [input]

      Convert the given HTML document to text.

      positional arguments:
      input Html input either from a file or a URL (default:stdin).

      optional arguments:
      -h, --help show this help message and exit
      -o OUTPUT, --output OUTPUT
      Output file (default:stdout).
      -e ENCODING, --encoding ENCODING
      Input encoding to use (default:utf-8 for files; detected server encoding for Web URLs).
      -i, --display-image-captions
      Display image captions (default:false).
      -d, --deduplicate-image-captions
      Deduplicate image captions (default:false).
      -l, --display-link-targets
      Display link targets (default:false).
      -a, --display-anchor-urls
      Display anchor URLs (default:false).
      -r ANNOTATION_RULES, --annotation-rules ANNOTATION_RULES
      Path to an optional JSON file containing rules for annotating the retrieved text.
      -p POSTPROCESSOR, --postprocessor POSTPROCESSOR
      Optional component for postprocessing the result (html, surface, xml).
      --indentation INDENTATION
      How to handle indentation (extended or strict; default: extended).
      --table-cell-separator TABLE_CELL_SEPARATOR
      Separator to use between table cells (default: three spaces).
      -v, --version display version information

      HTML to text conversion
      -----------------------
      convert the given page to text and output the result to the screen::

      $ inscript https://www.fhgr.ch

      convert the file to text and save the output to fhgr.txt::

      $ inscript fhgr.html -o fhgr.txt

      convert the file using strict indentation (i.e., minimize indentation and extra spaces) and save the output to fhgr-layout-optimized.txt::

      $ inscript --indentation strict fhgr.html -o fhgr-layout-optimized.txt

      convert HTML provided via stdin and save the output to output.txt::

      $ echo "

      Make it so!

      " | inscript -o output.txt

      HTML to annotated text conversion
      ---------------------------------
      convert and annotate HTML from a Web page using the provided annotation rules.

      Download the example `annotation-profile.json `_ and save it to your working directory::

      $ inscript https://www.fhgr.ch -r annotation-profile.json

      The annotation rules are specified in `annotation-profile.json`:

      .. code-block:: json

      {
      "h1": ["heading", "h1"],
      "h2": ["heading", "h2"],
      "b": ["emphasis"],
      "div#class=toc": ["table-of-contents"],
      "#class=FactBox": ["fact-box"],
      "#cite": ["citation"]
      }

      The dictionary maps an HTML tag and/or attribute to the annotations
      inscriptis should provide for them. In the example above, for instance, the tag
      ``h1`` yields the annotations ``heading`` and ``h1``, a ``div`` tag with a
      ``class`` that contains the value ``toc`` results in the annotation
      ``table-of-contents``, and all tags with a ``cite`` attribute are annotated with
      ``citation``.

      Given these annotation rules the HTML file

      .. code-block:: HTML

      Chur


      Chur is the capital and largest town of the Swiss canton of the
      Grisons and lies in the Grisonian Rhine Valley.

      yields the following JSONL output

      .. code-block:: json

      {"text": "Chur\n\nChur is the capital and largest town of the Swiss canton
      of the Grisons and lies in the Grisonian Rhine Valley.",
      "label": [[0, 4, "heading"], [0, 4, "h1"], [6, 10, "emphasis"]]}

      The provided list of labels contains all annotated text elements with their
      start index, end index and the assigned label.

      Annotation postprocessors
      -------------------------
      Annotation postprocessors enable the post processing of annotations to formats
      that are suitable for your particular application. Post processors can be
      specified with the ``-p`` or ``--postprocessor`` command line argument::

      $ inscript https://www.fhgr.ch \
      -r ./annotation/examples/annotation-profile.json \
      -p surface

      Output:

      .. code-block:: json

      {"text": " Chur\n\n Chur is the capital and largest town of the Swiss
      canton of the Grisons and lies in the Grisonian Rhine Valley.",
      "label": [[0, 6, "heading"], [8, 14, "emphasis"]],
      "tag": "Chur\n\nChur is the
      capital and largest town of the Swiss canton of the Grisons and
      lies in the Grisonian Rhine Valley."}

      Currently, inscriptis supports the following postprocessors:

      - surface: returns a list of mapping between the annotation's surface form and its label::

      [
      ['heading', 'Chur'],
      ['emphasis': 'Chur']
      ]

      - xml: returns an additional annotated text version::


      Chur

      Chur is the capital and largest town of the Swiss
      canton of the Grisons and lies in the Grisonian Rhine Valley.

      - html: creates an HTML file which contains the converted text and highlights all annotations as outlined below:

      .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/paper/images/annotations.png
      :align: left
      :alt: Annotations extracted from the Wikipedia entry for Chur with the ``--postprocess html`` postprocessor.

      Snippet of the rendered HTML file created with the following command line options and annotation rules:

      .. code-block:: bash

      inscript --annotation-rules ./wikipedia.json \
      --postprocessor html \
      https://en.wikipedia.org/wiki/Chur.html

      Annotation rules encoded in the ``wikipedia.json`` file:

      .. code-block:: json

      {
      "h1": ["heading"],
      "h2": ["heading"],
      "h3": ["subheading"],
      "h4": ["subheading"],
      "h5": ["subheading"],
      "i": ["emphasis"],
      "b": ["bold"],
      "table": ["table"],
      "th": ["tableheading"],
      "a": ["link"]
      }

      Web Service
      ===========

      A FastAPI-based Web Service that uses Inscriptis for translating HTML pages to plain text.

      Run the Web Service on your host system
      ---------------------------------------
      Install the optional feature `web-service` for inscriptis::

      $ pip install inscriptis[web-service]

      Start the Inscriptis Web service with the following command::

      $ uvicorn inscriptis.service.web:app --port 5000 --host 127.0.0.1

      Run the Web Service with Docker
      -------------------------------

      The docker definition can be found `here `_::

      $ docker pull ghcr.io/weblyzard/inscriptis:latest
      $ docker run -n inscriptis ghcr.io/weblyzard/inscriptis:latest

      Run as Kubernetes Deployment
      --------------------------------------

      The helm chart for deployment on a kubernetes cluster is located in the `inscriptis-helm repository `_.

      Use the Web Service
      -------------------

      The Web services receives the HTML file in the request body and returns the
      corresponding text. The file's encoding needs to be specified
      in the ``Content-Type`` header (``UTF-8`` in the example below)::

      $ curl -X POST -H "Content-Type: text/html; encoding=UTF8" \
      --data-binary @test.html http://localhost:5000/get_text

      The service also supports a version call::

      $ curl http://localhost:5000/version

      Example annotation profiles
      ===========================

      The following section provides a number of example annotation profiles illustrating the use of Inscriptis' annotation support.
      The examples present the used annotation rules and an image that highlights a snippet with the annotated text on the converted web page, which has been
      created using the HTML postprocessor as outlined in Section `annotation postprocessors <#annotation-postprocessors>`_.

      Wikipedia tables and table metadata
      -----------------------------------

      The following annotation rules extract tables from Wikipedia pages, and annotate table headings that are typically used to indicate column or row headings.

      .. code-block:: json

      {
      "table": ["table"],
      "th": ["tableheading"],
      "caption": ["caption"]
      }

      The figure below outlines an example table from Wikipedia that has been annotated using these rules.

      .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/wikipedia-chur-table-annotation.png
      :alt: Table and table metadata annotations extracted from the Wikipedia entry for Chur.

      References to entities, missing entities and citations from Wikipedia
      ---------------------------------------------------------------------

      This profile extracts references to Wikipedia entities, missing entities and citations. Please note that the profile isn't perfect, since it also annotates ``[ edit ]`` links.

      .. code-block:: json

      {
      "a#title": ["entity"],
      "a#class=new": ["missing"],
      "class=reference": ["citation"]
      }

      The figure shows entities and citations that have been identified on a Wikipedia page using these rules.

      .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/wikipedia-chur-entry-annotation.png
      :alt: Metadata on entries, missing entries and citations extracted from the Wikipedia entry for Chur.

      Posts and post metadata from the XDA developer forum
      ----------------------------------------------------

      The annotation rules below, extract posts with metadata on the post's time, user and the user's job title from the XDA developer forum.

      .. code-block:: json

      {
      "article#class=message-body": ["article"],
      "li#class=u-concealed": ["time"],
      "#itemprop=name": ["user-name"],
      "#itemprop=jobTitle": ["user-title"]
      }

      The figure illustrates the annotated metadata on posts from the XDA developer forum.

      .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/xda-posts-annotation.png
      :alt: Posts and post metadata extracted from the XDA developer forum.

      Code and metadata from Stackoverflow pages
      ------------------------------------------
      The rules below extracts code and metadata on users and comments from Stackoverflow pages.

      .. code-block:: json

      {
      "code": ["code"],
      "#itemprop=dateCreated": ["creation-date"],
      "#class=user-details": ["user"],
      "#class=reputation-score": ["reputation"],
      "#class=comment-date": ["comment-date"],
      "#class=comment-copy": ["comment-comment"]
      }

      Applying these rules to a Stackoverflow page on text extraction from HTML yields the following snippet:

      .. figure:: https://github.com/weblyzard/inscriptis/raw/master/docs/images/stackoverflow-code-annotation.png
      :alt: Code and metadata from Stackoverflow pages.

      Advanced topics
      ===============

      Annotated text
      --------------
      Inscriptis can provide annotations alongside the extracted text which allows
      downstream components to draw upon semantics that have only been available in
      the original HTML file.

      The extracted text and annotations can be exported in different formats,
      including the popular JSONL format which is used by
      `doccano `_.

      Example output:

      .. code-block:: json

      {"text": "Chur\n\nChur is the capital and largest town of the Swiss canton
      of the Grisons and lies in the Grisonian Rhine Valley.",
      "label": [[0, 4, "heading"], [0, 4, "h1"], [6, 10, "emphasis"]]}

      The output above is produced, if inscriptis is run with the following
      annotation rules:

      .. code-block:: json

      {
      "h1": ["heading", "h1"],
      "b": ["emphasis"],
      }

      The code below demonstrates how inscriptis' annotation capabilities can
      be used within a program:

      .. code-block:: python

      import urllib.request
      from inscriptis import get_annotated_text
      from inscriptis.model.config import ParserConfig

      url = "https://www.fhgr.ch"
      html = urllib.request.urlopen(url).read().decode('utf-8')

      rules = {'h1': ['heading', 'h1'],
      'h2': ['heading', 'h2'],
      'b': ['emphasis'],
      'table': ['table']
      }

      output = get_annotated_text(html, ParserConfig(annotation_rules=rules)
      print("Text:", output['text'])
      print("Annotations:", output['label'])

      Fine tuning
      -----------

      The following options are available for fine tuning inscriptis' HTML rendering:

      1. **More rigorous indentation:** call ``inscriptis.get_text()`` with the
      parameter ``indentation='extended'`` to also use indentation for tags such as
      ``

      `` and ```` that do not provide indentation in their standard
      definition. This strategy is the default in ``inscript`` and many other
      tools such as Lynx. If you do not want extended indentation you can use the
      parameter ``indentation='standard'`` instead.

      2. **Overwriting the default CSS definition:** inscriptis uses CSS definitions
      that are maintained in ``inscriptis.css.CSS`` for rendering HTML tags. You can
      override these definitions (and therefore change the rendering) as outlined
      below:

      .. code-block:: python

      from lxml.html import fromstring
      from inscriptis.css_profiles import CSS_PROFILES, HtmlElement
      from inscriptis.html_properties import Display
      from inscriptis.model.config import ParserConfig

      # create a custom CSS based on the default style sheet and change the
      # rendering of `div` and `span` elements
      css = CSS_PROFILES['strict'].copy()
      css['div'] = HtmlElement(display=Display.block, padding=2)
      css['span'] = HtmlElement(prefix=' ', suffix=' ')

      html_tree = fromstring(html)
      # create a parser using a custom css
      config = ParserConfig(css=css)
      parser = Inscriptis(html_tree, config)
      text = parser.get_text()

      Custom HTML tag handling
      ------------------------

      If the fine-tuning options discussed above are not sufficient, you may even override Inscriptis' handling of start and end tags as outlined below:

      .. code-block:: python

      from inscriptis import ParserConfig
      from inscriptis.html_engine import Inscriptis
      from inscriptis.model.tag import CustomHtmlTagHandlerMapping

      my_mapping = CustomHtmlTagHandlerMapping(
      start_tag_mapping={'a': my_handle_start_a},
      end_tag_mapping={'a': my_handle_end_a}
      )
      inscriptis = Inscriptis(html_tree,
      ParserConfig(custom_html_tag_handler_mapping=my_mapping))
      text = inscriptis.get_text()

      In the example the standard HTML handlers for the ``a`` tag are overwritten with custom versions (i.e., ``my_handle_start_a`` and ``my_handle_end_a``).
      You may define custom handlers for any tag, regardless of whether it already exists in the standard mapping.

      Please refer to `custom-html-handling.py `_ for a working example.
      The standard HTML tag handlers can be found in the `inscriptis.model.tag `_ package.

      Optimizing memory consumption
      -----------------------------

      Inscriptis uses the Python lxml library which prefers to reuse memory rather than release it to the operating system. This behavior might lead to an increased memory consumption, if you use inscriptis within a Web service that parses very complex HTML pages.

      The following code mitigates this problem on Unix systems by manually forcing lxml to release the allocated memory:

      .. code-block:: python

      import ctypes
      def trim_memory() -> int:
      libc = ctypes.CDLL("libc.so.6")
      return libc.malloc_trim(0)

      Examples
      ========

      Strict indentation handling
      ---------------------------

      The following example demonstrates modifying ``ParserConfig`` for strict indentation handling.

      .. code-block:: python

      from inscriptis import get_text
      from inscriptis.css_profiles import CSS_PROFILES
      from inscriptis.model.config import ParserConfig

      config = ParserConfig(css=CSS_PROFILES['strict'].copy())
      text = get_text('first', config)
      print(text)

      Ignore elements during parsing
      ------------------------------

      Overwriting the default CSS profile also allows changing the rendering of selected elements.
      The snippet below, for example, removes forms from the parsed text by setting the definition of the ``form`` tag to ``Display.none``.

      .. code-block:: python

      from inscriptis import get_text
      from inscriptis.css_profiles import CSS_PROFILES, HtmlElement
      from inscriptis.html_properties import Display
      from inscriptis.model.config import ParserConfig

      # create a custom CSS based on the default style sheet and change the
      # rendering of `div` and `span` elements
      css = CSS_PROFILES['strict'].copy()
      css['form'] = HtmlElement(display=Display.none)

      # create a parser configuration using a custom css
      html = """First line.

      User data
      Name:



      Password:


      """
      config = ParserConfig(css=css)
      text = get_text(html, config)
      print(text)

      Citation
      ========

      There is a `Journal of Open Source Software `_ `paper `_ you can cite for Inscriptis:

      .. code-block:: bibtex

      @article{Weichselbraun2021,
      doi = {10.21105/joss.03557},
      url = {https://doi.org/10.21105/joss.03557},
      year = {2021},
      publisher = {The Open Journal},
      volume = {6},
      number = {66},
      pages = {3557},
      author = {Albert Weichselbraun},
      title = {Inscriptis - A Python-based HTML to text conversion library optimized for knowledge extraction from the Web},
      journal = {Journal of Open Source Software}
      }

      Changelog
      =========

      A full list of changes can be found in the
      `release notes `_.