Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/weiji14/nz_convnet
A U-net based ConvNet for NZ imagery to classify building outlines.
https://github.com/weiji14/nz_convnet
aerial-imagery big-data binder computer-vision convolutional-neural-networks deep-learning jupyter-notebook keras
Last synced: 5 days ago
JSON representation
A U-net based ConvNet for NZ imagery to classify building outlines.
- Host: GitHub
- URL: https://github.com/weiji14/nz_convnet
- Owner: weiji14
- License: lgpl-3.0
- Created: 2018-02-12T06:40:55.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-03-15T23:34:40.000Z (almost 7 years ago)
- Last Synced: 2024-12-26T22:31:38.003Z (16 days ago)
- Topics: aerial-imagery, big-data, binder, computer-vision, convolutional-neural-networks, deep-learning, jupyter-notebook, keras
- Language: Jupyter Notebook
- Homepage:
- Size: 82 MB
- Stars: 19
- Watchers: 2
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
README
Convolutional Neural Network (ConvNet) trained on open data from Land Information New Zealand (LINZ). Specifically, we train the ConvNet on aerial photography to detect building outlines.
# Getting started
## Quickstart
Launch Binder
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/weiji14/nz_convnet/master)
## Installation
git clone https://github.com/weiji14/nz_convnet.git
cd nz_convnet
conda env create -f environment.yml## Running the jupyter notebook
source activate nz_convnet
python -m ipykernel install --user #to install conda env properly
jupyter kernelspec list --json #see if kernel is installed
jupyter notebook## Where the data goes
|Folder | Example of a file inside | extension | Notes |
|:--------------------- |:------------------------------------------------ |:---------:|:-------------- |
| data/vector | nz-building-outlines-pilot.shp | \*.shp | see section Training data/Mask |
| data/raster/downloads | lds-tile-2015-bk39-5000-0401-rgb-GTiff.zip | \*.zip | see section Training data/Images |
| data/raster | 2015_BK39_5000_0401_RGB.tif | \*.tif | unzipped files from data/raster/downloads |
| data/train | X_2015_BK39_5000_0401_RGB.hdf5 | \*.hdf5 | binary of tif file to load into numpy array |
| data/test | wellington-03m-rural-aerial-photos-2012-2013.tif | \*.tif | unzipped files similar to those in data/raster |## Prediction
### In near realtime!
source activate nz_convnet
python predict.py
#You can also set 2 integer parameters:
# 1st argument - output pixel size e.g. 256, 512, 1024 (default: 256)
# 2nd argument - prediction threshold e.g from least accurate 0% accept anything to 100% won't output much (default: 50)
python predict.py 512 50Live testing on imagery of Karori, Wellington.
![livesample1](https://user-images.githubusercontent.com/23487320/36468063-aed6c1bc-1746-11e8-8337-51a6a62ec796.gif)
### To a raster geotiff (which you can vectorize to a polygon)
Once you clone the repository, open the [jupyter notebook](nz_convnet.ipynb) and follow the instructions to run 'Part 5 - Save Results'.
You will need to have some geotiffs inside the data/test folder, and you may need to tweak the (img_height, img_width) parameter.There might need to be some fiddling on your part to get this parameter right, so that the input RGB image will be tiled perfectly.
The algorithm will create a prediction on each tile, and join in back together, so if it is not tiled perfectly due to the user setting, it will raise an error.Below is a visualization in [QGIS 3.0](https://qgis.org/) of a sample test image and the predicted raster mask output
![qgissample1](https://user-images.githubusercontent.com/23487320/37496053-2e7a79ce-2915-11e8-9732-fd27592ba237.gif)
Mask was styled using singleband pseudocolor, linear interpolation, with the OrRd color ramp in equal-interval mode.
Opacity set to 0% for values 0, 0.25 and 0.5, and 50% for values 0.75 and 1.0.
GIF was recorded using [Peek](https://github.com/phw/peek)### More output examples
Sample outputs on cross validation dataset plotted with matplotlib inside the [jupyter notebook](nz_convnet.ipynb) environment.
Left is input RGB image, Middle is ConvNet model output, Right is the Mask.![sample1](https://user-images.githubusercontent.com/23487320/36362177-17747d88-1597-11e8-8c17-167b8037cb71.png)
![sample2](https://user-images.githubusercontent.com/23487320/36362245-9dd6fa04-1597-11e8-959b-87ed3217e131.png)
![sample3](https://user-images.githubusercontent.com/23487320/36362261-bfc48046-1597-11e8-81c9-c4139569cde0.png)# Data sources used to train the [keras](https://github.com/keras-team/keras) model
Using freely available data from [LINZ Data Service](https://data.linz.govt.nz/). As there is a 3.5GB limit, we resort to using region crops using the 'Set a crop' tool on the top right. Not ideal but it ensures a little bit of reproducibility.
## Training data
### Images
|Region Crop Type |Region Name |LINZ Data Source|
| ------------------------------------- |:-----------------------------------:| --------------:|
| General Electorate Boundaries 2014 | Wigram | [Canterbury 0.3m Rural Aerial Photos (2015-16)](https://data.linz.govt.nz/layer/53519-canterbury-03m-rural-aerial-photos-2015-16/) |
| Manual Tile Selection\* | Hastings 2015_BK39_5000_{XXXX}_RGB | [0401](https://data.linz.govt.nz/x/vnGVkg) [0402](https://data.linz.govt.nz/x/aA5XSv) [0403](https://data.linz.govt.nz/x/DYsY9B) [0404](https://data.linz.govt.nz/x/qvgapR) [0405](https://data.linz.govt.nz/x/VKVcWf) [0501](https://data.linz.govt.nz/x/8hJeCu) [0502](https://data.linz.govt.nz/x/k57ftA) [0503](https://data.linz.govt.nz/x/QTuhaQ) [0504](https://data.linz.govt.nz/x/3qijGe) [0505](https://data.linz.govt.nz/x/gEXkwt) [0601](https://data.linz.govt.nz/x/KcLnd9) [0602](https://data.linz.govt.nz/x/wy9pLP) [0603](https://data.linz.govt.nz/x/bNwq2d) [0604](https://data.linz.govt.nz/x/Ekkshs) [0605](https://data.linz.govt.nz/x/r9ZuP8) |
| Manual Tile Selection\* | Tuakau bb32_{XXXX} | [4630](https://data.linz.govt.nz/x/9s9M9A) [4631](https://data.linz.govt.nz/x/nGwPpQ) [4632](https://data.linz.govt.nz/x/RekRWe) [4633](https://data.linz.govt.nz/x/43ZTCt) [4634](https://data.linz.govt.nz/x/hRNUs9) [4635](https://data.linz.govt.nz/x/LoBWaP) [4636](https://data.linz.govt.nz/x/yByYGd) [4637](https://data.linz.govt.nz/x/Fwbbd8) [4638](https://data.linz.govt.nz/x/tLQdLN) [4639](https://data.linz.govt.nz/x/XiDe2c) [4730](https://data.linz.govt.nz/x/oUpiP7) [4731](https://data.linz.govt.nz/x/Srdj6M) [4732](https://data.linz.govt.nz/x/6FSmmb) [4733](https://data.linz.govt.nz/x/yAvvdB) [4734](https://data.linz.govt.nz/x/idFoTq) [4735](https://data.linz.govt.nz/x/Mz4p96) [4736](https://data.linz.govt.nz/x/zPrrqL) [4737](https://data.linz.govt.nz/x/dmftXa) [4738](https://data.linz.govt.nz/x/HAUvDp) [4739](https://data.linz.govt.nz/x/uYHwt5) [4830](https://data.linz.govt.nz/x/pgh3xo) [4831](https://data.linz.govt.nz/x/T5W5e4) [4832](https://data.linz.govt.nz/x/7TK7MJ) [4833](https://data.linz.govt.nz/x/jp883Y) [4834](https://data.linz.govt.nz/x/PDwAin) [4835](https://data.linz.govt.nz/x/2bkCQ3) [4836](https://data.linz.govt.nz/x/eyZD7H) [4837](https://data.linz.govt.nz/x/JNNFnX) [4838](https://data.linz.govt.nz/x/vkBHUm) [4839](https://data.linz.govt.nz/x/Z8yKA2) [4930](https://data.linz.govt.nz/x/DWnLrG) [4931](https://data.linz.govt.nz/x/qtbNYW) [4932](https://data.linz.govt.nz/x/VHQQEk) [4933](https://data.linz.govt.nz/x/8fDRuz) [4934](https://data.linz.govt.nz/x/k32TcF) [4935](https://data.linz.govt.nz/x/QRpVJV) [4936](https://data.linz.govt.nz/x/3odWyj) [4937](https://data.linz.govt.nz/x/gCSYfy) [4938](https://data.linz.govt.nz/x/KaFaNE) [4939](https://data.linz.govt.nz/x/ww4b4U) [5030](https://data.linz.govt.nz/x/bLrdji) [5031](https://data.linz.govt.nz/x/EiffRx) [5032](https://data.linz.govt.nz/x/r7Ug8D) [5033](https://data.linz.govt.nz/x/WVHioT) [5034](https://data.linz.govt.nz/x/9r6kVh) [5035](https://data.linz.govt.nz/x/nFtnBw) [5036](https://data.linz.govt.nz/x/RdhosC) [5037](https://data.linz.govt.nz/x/42WqZS) [5038](https://data.linz.govt.nz/x/hQKsFg) [5039](https://data.linz.govt.nz/x/Lm8tvv)* Manual tile selection selects tiles manually from the tiles table, e.g. [here](https://data.linz.govt.nz/layer/53401-hawkes-bay-03m-rural-aerial-photos-2014-15/data/)
### Mask
- [NZ Building Outlines (Pilot)](https://data.linz.govt.nz/layer/53413-nz-building-outlines-pilot/) in shapefile format.
## Test data
|Region Crop Type |Region Name |LINZ Data Source|
| ------------------------------------- |:----------------------:| --------------:|
| NZ Topo 50 Map Sheets | BP31 - Porirua | [Wellington 0.3m Rural Aerial Photos (2012-2013)](https://data.linz.govt.nz/layer/51870-wellington-03m-rural-aerial-photos-2012-2013/)