Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/weiji14/nz_space_challenge
A prototype end-to-end deep learning solution to identify and traverse crevasses in Antarctica for safer navigation. Uses supervised classification and reinforcement learning.
https://github.com/weiji14/nz_space_challenge
a3c antarctica binder crevasse jupyter-notebook quilt reinforcement-learning remote-sensing supervised-machine-learning tensorflowjs u-net
Last synced: 6 days ago
JSON representation
A prototype end-to-end deep learning solution to identify and traverse crevasses in Antarctica for safer navigation. Uses supervised classification and reinforcement learning.
- Host: GitHub
- URL: https://github.com/weiji14/nz_space_challenge
- Owner: weiji14
- License: lgpl-3.0
- Created: 2018-03-18T20:30:48.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-18T00:45:10.000Z (over 6 years ago)
- Last Synced: 2024-12-27T13:22:12.016Z (17 days ago)
- Topics: a3c, antarctica, binder, crevasse, jupyter-notebook, quilt, reinforcement-learning, remote-sensing, supervised-machine-learning, tensorflowjs, u-net
- Language: Jupyter Notebook
- Homepage: https://weiji14.github.io/nz_space_challenge/index.html
- Size: 130 MB
- Stars: 6
- Watchers: 2
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# [New Zealand Space Challenge 2018](https://www.nzspacechallenge.com/)
Detecting crevasses in Antarctica for safer, more efficient navigation as an analogue for future space missions.Experimental (alpha) leaflet map demo using tensorflowjs [here](https://weiji14.github.io/nz_space_challenge/).
Youtube video giving a quick overview explanation [here](https://www.youtube.com/watch?v=Vy-f852grFg).
# CrevasseNet model architecture
Consists of a [classifier module](./crevasse_finder.ipynb) seamlessly joined to a [navigator module](./route_finder.ipynb), trained using supervised learning and reinforcement learning respectively.
![model_architecture](https://user-images.githubusercontent.com/23487320/39678382-dd2066bc-51df-11e8-99e0-7d88299a3146.png)
Note that the classifier component is actually much deeper, but has been abbreviated in the above diagram for simplicity.
## Sample predictions
### [Crevasse Classifier](./crevasse_finder.ipynb)
Input image (satellite/aerial)--> Intermediate Output (crevasse map)
![crevasse_prediction](https://user-images.githubusercontent.com/23487320/39678490-e5883350-51e1-11e8-8483-60fbb84865d9.png)
### [Route Navigator](./route_finder.ipynb)
Intermediate output (crevasse map) --> Action quality outputs
![route_navigator.gif](https://user-images.githubusercontent.com/23487320/39678342-fffe1798-51de-11e8-9061-0e7cc94f32e3.gif)
# Getting started
## Quickstart
Launch Binder, data will be loaded via [Quilt](https://github.com/quiltdata/quilt). Cheers to [data2binder](https://github.com/quiltdata/data2binder)!
[![Binder](https://mybinder.org/badge.svg)](https://mybinder.org/v2/gh/weiji14/nz_space_challenge/master)
## Installation
Start by cloning this [repo-url](/../../)
git clone
cd nz_space_challenge
conda env create -f environment.yml## Running the jupyter notebook
source activate nz_space_challenge
python -m ipykernel install --user #to install conda env properly
jupyter kernelspec list --json #see if kernel is installed
jupyter notebook# [Data used](/data)
| Name | Data Source |
| -------------------------------------------------------------------- | ------------------------------------------------:|
|MOA-derived Structural Feature Map of the Ronne Ice Shelf, Version 1 | [NSIDC-0497](https://nsidc.org/data/nsidc-0497) |
|MODIS Mosaic of Antarctica 2003-2004 (MOA2004) Image Map, Version 1 | [NSIDC-0280](https://nsidc.org/data/nsidc-0280) |