Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/weijie-chen/econometrics-with-python
Tutorials of econometrics featuring Python programming. This is a crash course for reviewing the most important concepts and techniques of basic econometrics, the theories are presented lightly without hustles of derivation and Python codes are straightforward.
https://github.com/weijie-chen/econometrics-with-python
data-analysis data-science econometrics economics python statistics time-series
Last synced: 2 days ago
JSON representation
Tutorials of econometrics featuring Python programming. This is a crash course for reviewing the most important concepts and techniques of basic econometrics, the theories are presented lightly without hustles of derivation and Python codes are straightforward.
- Host: GitHub
- URL: https://github.com/weijie-chen/econometrics-with-python
- Owner: weijie-chen
- License: mit
- Created: 2021-07-16T19:54:26.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-06-09T20:19:25.000Z (8 months ago)
- Last Synced: 2025-01-12T07:07:08.011Z (9 days ago)
- Topics: data-analysis, data-science, econometrics, economics, python, statistics, time-series
- Language: Jupyter Notebook
- Homepage:
- Size: 37.6 MB
- Stars: 378
- Watchers: 9
- Forks: 128
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![Cover_Github_Repositories1](https://user-images.githubusercontent.com/59842360/178134712-79b96545-2fee-40c5-b674-0708a207cfa8.jpg)
# Econometrics With Python [![MIT License](https://img.shields.io/apm/l/atomic-design-ui.svg?)]()
[last updated in 10th July 2022]
These lecture notes are intended for econometrics training (originally used for new-hire training in the hedge fund that I was working in), suitable for university/grad students, data/quantitative analysts, junior business/economic/financial researchers and etc. The training are in two parts, the first part cover basic level and implementation in Python, the second part dive deeper into the econometric/statistical theory which is much more mathematical intensive.This set of notes are rewritten from my MATLAB econometrics notes, which are outdated. I am still organizing the old materials.
The lectures notes are loosely based on several textbooks:
1. Introduction to Econometrics, by Christopher Dougherty
2. Introduction to Econometrics, by James H. Stock and Mark W. Watson
3. Basic Econometrics, by Damodar N. Gujarati![covers_economtrics-min](https://user-images.githubusercontent.com/59842360/126119680-edc6006d-2458-4ae6-8be1-5d587d37ecb5.jpg)
## Prerequisites
The first part is introductory level, it requires trainees have basic knowledge of statistics and probability theory. The second part require linear algebra.And you would benefit more from the tutorials if you have some skills of:
- [x] NumPy
- [x] Matplotlib
- [x] Pandas## Contents
I strongly advise you to download all the files to view them on your PC, since nbviewer and Github has frequent rendering glitches.### Part I
[Lecture 1 - Simple Linear Regression](https://nbviewer.jupyter.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/1.%20Simple%20Linear%20Regression.ipynb)
[Lecture 2 - Multiple Linear Regression, Multicollinearity and Heteroscedasticity](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/2.%20Multiple%20Linear%20Regression%2C%20Multicollinearity%20and%20Heteroscedasticity.ipynb)
[Lecture 3 - Practical Cases of Linear Regression](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/3.%20Practical%20Cases%20of%20Linear%20Regression%20.ipynb)
[Lecture 4 - Dummy Variables](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/4.%20Dummy%20Variable.ipynb)
[Lecture 5 - Nonlinear Regression](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/5.%20Nonlinear%20Regression.ipynb)
[Lecture 6 - Qualitative Response Model](https://github.com/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/6.%20Qualitative%20Response%20Model%20.ipynb)
[Lecture 7 - Model Specification](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/7.%20Model%20Specification.ipynb)
[Lecture 8 - Identification and Simultaneous-Equation Models](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/7.%20Model%20Specification.ipynb)
[Lecture 9 - Panel Data Analysis](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/9.%20Panel%20Data%20Analysis.ipynb)
[Lecture 10 - Autocorrelation](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/10.%20Autocorrelation.ipynb)
[Lecture 11 - Time Series: Basics](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/11.%20Time%20Series%20-%20Basics.ipynb)
[Lecture 12 - Time Series: Forecast](https://nbviewer.org/github/MacroAnalyst/Basic_Econometrics_With_Python/blob/main/12.%20Time%20Series%20-%20Forcasting.ipynb)
### Part II
[Lecture 1 - Geometry of OLS](https://nbviewer.org/github/MacroAnalyst/Econometrics_With_Python/blob/main/Chapter%201%20-%20Geometry%20of%20Ordinary%20Least%20Squares.ipynb)
[Lecture 2 - Statistical Properties of OLS](https://nbviewer.org/github/weijie-chen/Econometrics-With-Python/blob/main/Chapter%202%20-%20Statistical%20Properties%20of%20OLS.ipynb)
[Lecture 3 - Hypothesis Test and Confidence Interval](https://nbviewer.org/github/weijie-chen/Econometrics-With-Python/blob/main/Chapter%203%20-%20Hypothesis%20Test%20and%20Confidence%20Interval.ipynb)## Screen Shots Demonstrations
![截图01](https://user-images.githubusercontent.com/59842360/144827958-bcd71d00-ac22-423f-84a6-4d2af87c676b.jpg)
![截图02](https://user-images.githubusercontent.com/59842360/144827956-016047c1-0a08-4baa-9118-53395eff6bad.jpg)
![截图03](https://user-images.githubusercontent.com/59842360/144827959-260979c8-1c36-4cf1-a7e7-ba9716de4578.jpg)
![截图04](https://user-images.githubusercontent.com/59842360/144828132-1307ef49-aab4-471f-897e-a4229ddc6045.jpg)
![截图06](https://user-images.githubusercontent.com/59842360/144827965-aec7f52f-8c65-49e8-9d7e-292218c3d989.jpg)
![截图07](https://user-images.githubusercontent.com/59842360/144827943-e09bcb3d-d53e-470f-aa46-82952c91b1a2.jpg)
![截图08](https://user-images.githubusercontent.com/59842360/144827948-8c2c3842-564e-4d87-bbea-bf09852fe294.jpg)
![截图09](https://user-images.githubusercontent.com/59842360/144827954-09b97a8f-3ebc-4658-b9c5-d9cd0115be4a.jpg)
![截图10](https://user-images.githubusercontent.com/59842360/144827961-ff799a3c-7156-4e96-bcb3-2b6411e34508.jpg)
![截图11](https://user-images.githubusercontent.com/59842360/144827963-a36b6f94-8a05-4445-a3bd-f8273859f585.jpg)
![截图12](https://user-images.githubusercontent.com/59842360/144827971-f96dcc20-0ed4-467b-ae93-5747b62541f4.jpg)
![截图13](https://user-images.githubusercontent.com/59842360/144827972-6ef99513-1305-4007-a990-3165f1949d42.jpg)
![截图14](https://user-images.githubusercontent.com/59842360/144827975-de11727a-3297-423f-9954-cd000f1a4862.jpg)
![截图15](https://user-images.githubusercontent.com/59842360/144827977-18cef5d4-8175-4fb3-8b03-ecb454365169.jpg)
![截图16](https://user-images.githubusercontent.com/59842360/144827980-6135c943-2f07-4a52-b2a8-fb2f5cb2d32a.jpg)
![截图17](https://user-images.githubusercontent.com/59842360/144827978-24da8d60-8cae-4163-b3a0-84119b8ef9c6.jpg)
![截图01](https://user-images.githubusercontent.com/59842360/178335929-995a4299-d0bf-4da8-b59a-571a5d296e27.jpg)
![截图02](https://user-images.githubusercontent.com/59842360/178335931-368f07f9-9e18-43de-9a37-82bf15026ed4.jpg)
![截图03](https://user-images.githubusercontent.com/59842360/178335933-83bb7bc5-fd50-4aea-9c34-afe4e8dd95b4.jpg)
![截图04](https://user-images.githubusercontent.com/59842360/178335913-a36ac76b-9bd4-4d9a-b589-04de529fb44a.jpg)
![截图05](https://user-images.githubusercontent.com/59842360/178335920-3c472ff8-0933-46a9-b06d-b92684033f8e.jpg)
![截图06](https://user-images.githubusercontent.com/59842360/178335923-9f95d50f-4715-4ec0-a3c9-5fc6b0533546.jpg)
![截图07](https://user-images.githubusercontent.com/59842360/178335924-783511c2-3881-4ca2-bb1f-a80b82bdedf2.jpg)
![截图08](https://user-images.githubusercontent.com/59842360/178335926-e015933c-bd90-4ec0-a6b4-1ed59ab7efd3.jpg)