Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/weir12/DENA

Deep learning model used to detect RNA m6a with read level based on the Nanopore direct RNA data.
https://github.com/weir12/DENA

nanopore

Last synced: about 2 months ago
JSON representation

Deep learning model used to detect RNA m6a with read level based on the Nanopore direct RNA data.

Awesome Lists containing this project

README

        

![image]( ./DENA_log.jpg)
![image](https://img.shields.io/badge/Python-3.7-green) ![image](https://img.shields.io/badge/Pytorch-1.8-blue) ![image](https://img.shields.io/badge/Centos-8-yellow)
- [DENA (Deeplearning Explore Nanopore m6A)](#dena-deeplearning-explore-nanopore-m6a)
- [Author: liang Ou](#author-liang-Ou)
- [E-mail:[email protected]](#e-mailliangouipsaccn)
- [Getting Started](#getting-started)
- [0.Prerequisites](#0prerequisites)
- [1.Input data required](#1input-data-required)
- [1.Obtain coordinates matching motif in reference](#1obtain-coordinates-matching-motif-in-reference)
- [New version function](#new-version-function)
- [2.Signal re-sqguiggle and sequence alignment](#2signal-re-sqguiggle-and-sequence-alignment)
- [2.1 fast5 base-calling](#21-fast5-base-calling)
- [2.2 tombo re-sqguiggle](#22-tombo-re-sqguiggle)
- [2.3 sequence alianment based on minimap2](#23-sequence-alianment-based-on-minimap2)
- [3.extract features](#3extract-features)
- [New version function](#new-version-function-1)
- [Parameters panel](#parameters-panel)
- [4.Predict(v3.0)](#4predictv30)
- [New version function](#new-version-function-2)
- [Parameters](#parameters)
- [Requirement](#requirement)
- [Example](#example)
- [TroubleShoot](#troubleshoot)
- [Utils](#utils)
- [1.Dimension reduction & Cluster of a dataset](#1dimension-reduction--cluster-of-a-dataset)
- [2.Absolute difference of mean](#2absolute-difference-of-mean)
- [Datasets](#Datasets)
- [Citing](#Citing)
- [Licence](#Licence)
- [Contact](#Contact)
# DENA (Deeplearning Explore Nanopore m6A)

Deep learning model used to detect RNA m6a with read level based on the Nanopore direct RNA data.

## Author: liang Ou
### E-mail:[email protected]
### Sincere thanks to [in-house_scripts](./in-house_scripts) developed by Hang Qin (https://github.com/q1134269149).

## Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

## Download well-trained LSTM-model files
The links of DENA model files are:

(1) Baidu network disk (百度网盘): https://pan.baidu.com/s/166FmGUziN91kCLknern6Rw?pwd=ocm8;

(2) Google Drive: https://drive.google.com/file/d/10GZaENvetOZ0ClSsHxDhSal0VXHlmK26/view?usp=sharing.

**Please clone DENA again, and download the updated DENA model files through the above links, and replace the old model files, and then re-perform RNA m6A modification prediction using the code of step4 (Predict)**. Thanks!

### 0.Prerequisites

Utilizing Conda or virtualenv to create a relatively independent & clean work environment may be a wise choice for using DENA

Here are What things you need to install(Please confirm one by one):
1. Unix like system(centos,ubuntu,etc)
2. Cuda-supported graphics cards(optional)
3. Python>=3.7.x and Pytorch
4. tombo,minimap2,samtools

**Note:**

You can get source code of DENA from zenodo with the link: https://zenodoorg/record/5603381 (Discard).

And you can also learn more by reading our research entitled "**DENA: training an authentic neural network model using Nanopore sequencing data of Arabidopsis transcripts for detection and quantification of N6-methyladenosine on RNA**" .

#### Input data required
1. a batch of fast5 files containing the raw current signals
2. a fastq file which is contain basecalled sequence corresponding fast5 above
3. Appropriate reference sequence(Transcriptome is recommended for RNA data)

*Tips:
${variable} : You need to assign it with the your actual value

### 1.Obtain coordinates matching motif in fasta sequence of reference (Must be transcriptome reference)
```bash
python3 LSTM_extract.py get_pos --fasta ${fasta_fn} --motif 'RRACH' --output ./candidate_predict_pos.txt
```
You will get result(candidate_predict_pos.txt) like this
```
AT1G01010.1 17 22 + AAACC
```
*Note:Please confirm that the transcriptome reference is provided instead of the genomic reference before this step.

#### New version function

- We no longer need external C++ tools
- Fixed compatibility bugs in FASTA file of some species

### 2.fast5 base-calling, Signal re-sqguiggle and sequence alignment
#### 2.1 fast5 base-calling
(Optional)If the fast5 files was multi_read_fast5 files, it is necessary to convert folders containing multi_read_fast5 files into single_read_fast5 files using https://github.com/nanoporetech/ont_fast5_api.
```bash
multi_to_single_fast5 -t 20 -i ${multi_read_fast5_folder} -s ${single_read_fast5_folder} --recursive
```

This step is to obtain the fastq sequences from fast5 files by base-calling using [guppy](Preferred version3.2.4)
```bash
${SoftPath}/guppy_basecaller -i ${single_read_fast5_folder} -s ${outfile} --flowcell FLO-MIN106 --kit SQK-RNA001 --cpu_threads_per_caller {thread} --qscore_filtering --fast5_out --records_per_fastq 0 --recursive
cat ${outfile}/pass/*.fastq > basecalls.fq
```
- ${SoftPath}: the path of guppy software
- ${single_read_fast5_folder}: the path of single fast5 files that need to base-call.
- ${outfile}: the path of output folder
*Note: Please check the version of `flowcell` and `kit` of the Library Building used in the experiments,and set them correctly.

#### 2.2 tombo re-sqguiggle
This step is to obtain a unique mapping between the signal fragment of each base of each reads and the reference sequence
For detailed help, please see https://github.com/nanoporetech/tombo
```bash
tombo resquiggle --rna --processes {thread} --corrected-group RawGenomeCorrected_001 --basecall-group Basecall_1D_001 --include-event-stdev --overwrite --ignore-read-locks ${params.fast5} ${params.ref}
```
*Note: Please check the `basecall-group` to be used before re-sqguiggle, and set the `corrected-group`.

#### 2.3 sequence alianment based on minimap2
For detailed help, please see [minimap2](https://github.com/lh3/minimap2) [samtools](https://github.com/samtools/samtools)

```bash
minimap2 -ax map-ont -L --secondary=no ${transcriptome} ${basecalls.fq} | samtools view -bh -F 2324 | samtools sort -O bam > basecalls.bam
samtools index basecalls.bam
```
- ${transcriptome}: the fasta of transcriptome reference
- ${basecalls.fq}: the fastq of base-calling from fast5 files in step 2.1

### 3.extract features

#### New version function

- Support for reading BAM files in BRI mode to reduce memory consumption

Install the C ++ libraries and Python wrappers to enable this functionality
[https://github.com/nanoporetech/bripy](https://github.com/nanoporetech/bripy) [https://github.com/jts/bri](https://github.com/jts/bri)

- Flexible window Settings are now supported
- In this step,you need provide two input params for program:fast5_folder(has re-squiggled by tombo) and bam file(sorted & index)

#### Parameters panel
```python
parser.add_argument('--processes',default=24,type=int,
help=("Number of processes allocated"))
parser_a = subparsers.add_parser('get_pos',formatter_class=argparse.RawDescriptionHelpFormatter,help='get candidate position')
parser_a.add_argument('--fasta',required=True, default=None,
help=("reference fasta"))
parser_a.add_argument('--motif', default='RRACH',
help=("specifies a motif pattern"))
parser_a.add_argument('--output', default='./candidate_predict_pos.txt',
help=("output file"))
parser_a.set_defaults(func=get_pos)
parser_b = subparsers.add_parser('predict',formatter_class=argparse.RawDescriptionHelpFormatter,help='predict')
parser_b.add_argument('--fast5',required=True, default=None,
help=("a directory(has been re-squiggled by tombo) that contains the FAST5 files"))
parser_b.add_argument('--corr_grp',default="RawGenomeCorrected_000",
help=("Analysis slot containing the re-squiggle information"))
parser_b.add_argument('--bam',required=True, default=None,
help=("BAM file used to extract base-quality(feature)"))
parser_b.add_argument('--sites',default='./candidate_predict_pos.txt',
help=("candidate position are used to extract features of mapped reads"))
parser_b.add_argument('--label',required=True,
help=("The string used to distinguish the sample"))
parser_b.add_argument('--windows',required=True,nargs=2,metavar='3',type=int,
help=("Window drift away from the center of m6A"))
parser_b.add_argument('--debug',action='store_true',default=False,
help=("Enable debug mode (output more detailed run log)"))
parser_b.add_argument('--bri',action='store_true',default=False,
help=("Enable BRI mode (Reduce RAM consumption of BAM files)"))
```

```bash
python3 LSTM_extract.py --processes ${number} predict --fast5 ${fast5_fn} --corr_grp ${RawGenomeCorrected_000} --bam ${bam_fn} --sites ${candidate_predict_pos.txt} --label ${any meaningful string} --windows 2 2
```
- ${RawGenomeCorrected_000}: The path of `corr_grp` generated in step 2.2. Please confirm to set the same `corr_grp` as step 2.2.
- ${number}: The Number of threads, default: 25.
*Note: `--windows 2 2` indicates that a total of 5 bases are extracted, which contains the candidate modified site and 2 bases upstream and downstream of it, e.g. "AA**A**CA".

- You will get result(*.tmp) like this
```
>AT4G35300.4_2258_GGACT
37b79f1c-c3c2-4c6f-a25c-65e618b7bb6f 28.0,27.0,24.0,31.0,24.0,74.0,6.0,33.0,27.0,63.0,2.6680189601886424,2.4252261046166588,0.16661375589914051,-0.4574264926055352,0.8548283129364287,2.6957830373199303,2.568959475115271,0.08321765590395497,-0.5128530864579424,0.8695237415728408,0.45954324955726,0.7483187244003591,0.23116851931302654,0.21901705697503512,0.23758996696952467
e944b3ff-156c-409f-95f3-996dfa3d3fd3 26.0,30.0,28.0,25.0,31.0,158.0,6.0,47.0,37.0,27.0,2.3582877438291905,2.354059678502405,-0.22480153918158693,-0.5296594244218555,1.084794467401169,2.5690832257777787,2.4814037210635487,-0.24292374684288695,-0.5435391915773902,1.122371397992982,0.7615589741556634,0.6712493289989668,0.19113118923616254,0.20057491958760532,0.21721818493112435
```
### 4.Predict(v3.0)
Tips :If the input features **NOT changed** here is **NO** need to repeat run step 2
#### New version function
1. add "-d" in cmd for output m6a probability for each read at each site.
2. Added support for deep learning.
3. _**Caution** :Using deep learning model will occupy a lot of computing resources and time costing without GPU_

#### Parameters
In this step,you need Provide the following parameters:
1. ${path_features} :Path contain [0-9]*.tmp (generated by step 2)
2. ${path_models} :Path contain *.dat(ensemble learning) or *.pkl (deep learning)
3. ${path_output} The output path
4. ${prefix_outfile} The prefix of the output file
#### Requirement
- conda install pytorch torchvision torchaudio cpuonly -c pytorch

#### Example
```bash
python LSTM_predict.py -i ${path_features} -m ${path_models} -o ${path_output} -p ${prefix_outfile} -d
```

- You will get result **${prefix_outfile}**.tsv in **${path_output}** like this:
```
AT1G01010.1 30 AAACA 0 3 0.0
AT1G01010.1 212 AAACA 0 5 0.0
AT1G01010.1 341 AAACA 1 5 0.2
AT1G01020.2 679 AAACA 2 2 1.0
AT1G01030.1 306 AAACA 0 10 0.0
AT1G01030.1 422 AAACA 0 10 0.0
AT1G01030.1 726 AAACA 0 11 0.0
AT1G01030.1 838 AAACA 1 11 0.09090909090909091
AT1G01030.1 876 AAACA 1 11 0.09090909090909091
AT1G01030.1 1233 AAACA 0 11 0.0
```



Formula of m6a ratio

- **Note**:See the reply for the description of each column: https://github.com/weir12/DENA/issues/12

- if "-d" was added, you will get result **${prefix_outfile}_details**.tsv in **${path_output}** like this:
```
AT1G01010.1 30 (# Description: AT1G01010.1 was transcript ID; 30 is the coordinate of candidate "RRACH" site on trancript AT1G01010.1)
b129005a-01e7-49f8-bb50-aadf0d57f079 0.235
85a565d6-08c1-4819-a12a-2beacbf63319 0.447
a5fafedc-1539-4cb8-ad6d-72c8699220cd 0.498
(# Description: The first column was the read ID aligned to AT1G01010.1; Second column was the m6A-modified probability of this read at the candidate coordinate on AT1G01010.1)
```

### TroubleShoot

- Make sure the rules for gene names are consistent among bam file,fast5 files and fasta file

## Utils
### 1.Dimension reduction & Cluster of a dataset

- **python3 ./pca_cluster.py ${some params}**
```python
parser.add_argument('--processes',default=24,type=int,
help=("Number of processes allocated"))
parser.add_argument('--input',required=True, default=None,
help=("A directory containing both 'positive_dataset.txt' and 'negative_dataset.txt'"))
parser.add_argument('--output', default='./dimRe_clust_fig',
help=("output directory"))
parser.add_argument('--pos_fast5',required=True, default=None,
help=("a directory(has been re-squiggled by tombo) that contains the FAST5 files of positive_dataset"))
parser.add_argument('--neg_fast5',required=True, default=None,
help=("a directory(has been re-squiggled by tombo) that contains the FAST5 files of negative_dataset"))
parser.add_argument('--corr_grp',default="RawGenomeCorrected_000",
help=("Analysis slot containing the re-squiggle information"))
parser.add_argument('--windows',required=True,nargs=2,metavar='3',type=int,
help=("Window drift away from the center of m6A"))
parser.add_argument('--features',default='norm_mean',nargs=+,choices=['length','norm_mean','norm_med','base_q','norm_stdev']
help=("Input features for dimensionality reduction clustering"))
parser.add_argument('--algorithm_DimRe',default="PCA",choices=['PCA']
help=("Algorithms for dimension reduction"))
parser.add_argument('--algorithm_cluster',default="kmeans",choices=['kmeans']
help=("Algorithms for cluster"))
```

- For each candidate site, the corresponding dimensionality reduction result is printed, like this

BLUE:WT sample RED : KO/KD sample
![](https://cdn.nlark.com/yuque/0/2021/png/644304/1618468161343-928ec141-b00c-4343-ba92-9bac7aff15e6.png#clientId=ub8b101f3-54a8-4&from=paste&height=263&id=u909b4ce7&margin=%5Bobject%20Object%5D&originHeight=1051&originWidth=1384&originalType=binary&size=130003&status=done&style=none&taskId=u3de8527d-cda4-446a-acf8-6133bf728b0&width=346)
### 2.Absolute difference of mean

- Calculate and visualize the difference between the current mean values of the two samples covered on the candidate sites
- **python3 ./box_plot.py **
- **Cautions!!!:**Please change the custom variables (below) within the script. This script does not accept CMD parameters
```python
#Defining variables
sites_file="/home/weir/m6a_model/DENA/plotter/final_overlep_sites"
pos_fast5="/home/weir/tair_rawdata/elife_rawdata/VIRc"
neg_fast5="/home/weir/tair_rawdata/elife_rawdata/vir-1"
corrected_group='RawGenomeCorrected_000'

In [4]: !head "/home/weir/m6a_model/DENA/plotter/final_overlep_sites"
AT5G67590.1 787
AT5G67590.1 733
AT5G67560.1 1156
AT5G67560.1 1126
AT5G67510.1 677
AT5G67330.1 2164
AT5G67250.1 2329
AT5G67130.1 1714
AT5G67030.1 2469
AT5G67030.1 2308

```

- result is printed, like this(Data used for drawing is also saved for downstream analysis and visual adjustment)

![](https://cdn.nlark.com/yuque/0/2021/png/644304/1618468669638-aef7bc8b-726c-40d1-b79c-15f5afa5fcba.png#clientId=ub8b101f3-54a8-4&from=paste&height=331&id=u1122a54a&margin=%5Bobject%20Object%5D&originHeight=1323&originWidth=1822&originalType=binary&size=146707&status=done&style=none&taskId=ub6f0d7ec-52b6-4c98-b06a-badb0dd96f6&width=455.5)

## Datasets
*All direct RNA-Seq reads of wild-type, _fip37-4_ and _mtb_ A.thaliana lines generated by this study have been submitted to the ENA under accession `PRJEB45935`, and National Genomics Data Center, China National Center for Bioinformation (CNCB-NGDC) under project accession PRJCA007105 and GSA accession CRA005317.

## Citing
If you found this work useful and used our software, please cite our work:

Qin, H., Ou, L., Gao, J., Chen, L., Wang, J. W., Hao, P., & Li, X. (2022). DENA: training an authentic neural network model using Nanopore sequencing data of Arabidopsis transcripts for detection and quantification of N6-methyladenosine on RNA. Genome biology, 23(1), 25. https://doi.org/10.1186/s13059-021-02598-3

## Licence
MIT()

Copyright © 2021 Liang Ou

## Contact
All suggestions are welcome to [email protected]