An open API service indexing awesome lists of open source software.

https://github.com/welchbj/tt

a Pythonic toolkit for working with Boolean expressions
https://github.com/welchbj/tt

boolean boolean-algebra boolean-expression python sat sat-solver satisfiability transformations truth-table

Last synced: about 2 months ago
JSON representation

a Pythonic toolkit for working with Boolean expressions

Awesome Lists containing this project

README

          

Synopsis
--------

tt (**t**\ ruth **t**\ able) is a library aiming to provide a toolkit for working with Boolean expressions and truth tables. Please see the `project site`_ for guides and documentation.

Installation
------------

tt is tested on the latest three major versions of CPython. You can get the latest release from PyPI with::

pip install ttable

Features
--------

Parse expressions::

>>> from tt import BooleanExpression
>>> b = BooleanExpression('A impl not (B nand C)')
>>> b.tokens
['A', 'impl', 'not', '(', 'B', 'nand', 'C', ')']
>>> print(b.tree)
impl
`----A
`----not
`----nand
`----B
`----C

Evaluate expressions::

>>> b = BooleanExpression('(A /\\ B) -> (C \\/ D)')
>>> b.evaluate(A=1, B=1, C=0, D=0)
False
>>> b.evaluate(A=1, B=1, C=1, D=0)
True

Interact with expression structure::

>>> b = BooleanExpression('(A and ~B and C) or (~C and D) or E')
>>> b.is_dnf
True
>>> for clause in b.iter_dnf_clauses():
... print(clause)
...
A and ~B and C
~C and D
E

Apply expression transformations::

>>> from tt import to_primitives, to_cnf
>>> to_primitives('A xor B')

>>> to_cnf('(A nand B) impl (C or D)')

Or create your own::

>>> from tt import tt_compose, apply_de_morgans, coalesce_negations, twice
>>> b = BooleanExpression('not (not (A or B))')
>>> f = tt_compose(apply_de_morgans, twice)
>>> f(b)

>>> g = tt_compose(f, coalesce_negations)
>>> g(b)

Exhaust SAT solutions::

>>> b = BooleanExpression('~(A or B) xor C')
>>> for sat_solution in b.sat_all():
... print(sat_solution)
...
A=0, B=0, C=0
A=1, B=0, C=1
A=0, B=1, C=1
A=1, B=1, C=1

Find just a few::

>>> with b.constrain(A=1):
... for sat_solution in b.sat_all():
... print(sat_solution)
...
A=1, B=0, C=1
A=1, B=1, C=1

Or just one::

>>> b.sat_one()

Build truth tables::

>>> from tt import TruthTable
>>> t = TruthTable('A iff B')
>>> print(t)
+---+---+---+
| A | B | |
+---+---+---+
| 0 | 0 | 1 |
+---+---+---+
| 0 | 1 | 0 |
+---+---+---+
| 1 | 0 | 0 |
+---+---+---+
| 1 | 1 | 1 |
+---+---+---+

And `much more`_!

License
-------

tt uses the `MIT License`_.

.. _MIT License: https://opensource.org/licenses/MIT
.. _project site: https://tt.brianwel.ch
.. _bool.tools: http://www.bool.tools
.. _much more: https://tt.brianwel.ch/en/latest/user_guide.html